Agarwal, M., Srivastava, R., Singh, V., & Singh, R. (2023). Utility of SSR markers in plant genomics: Advances and applications. Plant Molecular Biology Reporter, 41(1), 67–82. https://doi.org/10.1007/s11105-022-01359-7
Ahmad, M., Javed, M. T., Rehman, R. U., & Iqbal, M. (2022). Nutritional profile and health benefits of wheat grain. Journal of Cereal Science, 105, 103479. https://doi.org/10.1016/j.jcs.2022.103479
Alqudah, A. M., Sallam, A., Baenziger, P. S., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley–a review. Journal of Advanced Research, 22, 119–135. https://doi.org/10.1016/j.jare.2019.10.013
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/bioinformatics/bth457
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 160(901), 268–282. https://doi.org/10.1098/rspa.1937.0109
Bohnert, H. J., Farago, L., & Grene, R. (2006). The role of proline in plant adaptation to environmental stress. Plant and Cell Physiology, 47(5), 1191–1201. https://doi.org/10.1093/pcp/pcj092
Carillo, P., & Gibon, Y. (2011). Protocol: Determination of proline content. Plant Stress, 5(1), 32–38. https://bio-protocol.org/exchange/minidetail?type=30&id=10096794
Chen, L., Xu, D., & Zhang, W. (2024). Cold stress responses in wheat during reproductive stages: Physiological and molecular insights. Plant Physiology and Biochemistry, 205, 105432. https://doi.org/10.1016/j.plaphy.2024.105432
Cheong, B.-E., Ho, W. W. H., & Adiredjo, A. L. (2022). Role of antioxidant enzymes in plant tolerance to abiotic stresses. Plant Physiology Reports, 27, 1–12. https://doi.org/10.1007/s40502-022-00627-z
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
FAO. (2023). FAOSTAT: Crops and livestock products. Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/faostat
Forlani, G., & Funck, D. (2020). Methods for proline quantification in plants: A review. Plant Physiology and Biochemistry, 156, 264–273. https://doi.org/10.1016/j.plaphy.2020.09.019
Green, M. R., & Sambrook, J. (2012). Molecular cloning: A laboratory manual (4th ed.). Cold Spring Harbor Laboratory Press.
Guo, X., Zhang, Z., Zhang, Y., Huang, C., & Ma, X. (2019). Cold stress signaling and cold tolerance mechanism in plants: From signal perception to the ICE-CBF-COR pathway. International Journal of Molecular Sciences, 20(17), 4201. https://doi.org/10.3390/ijms20174201
Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2021). Wheat genomics: Present status and future prospects. International Journal of Plant Genomics, 2021, 1–25. https://doi.org/10.1155/2021/6618157
Gupta, P. K., Rustgi, S., & Kulwal, P. L. (2022). Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 110, 1–28. https://doi.org/10.1007/s11103-021-01225-9
Jabari, A., Ahmadi, J., & Hashemi, A. (2023). Genetic structure and diversity analysis of Iranian wheat landraces for breeding programs. Euphytica, 219, 45. https://doi.org/10.1007/s10681-023-03210-z
Jahanbakhsh-Godehkahriz, S., Karimzadeh, G.H., & Rastgar, F. (2009). Influence of vernalization on some physiological characteristics and cold tolerance in two susceptible and tolerant cultivars of bread wheat. Electronic Journal of Crop Production, 2(3), pp.85-106. https://doi.org/20.1001.1.2008739.1388.2.3.6.8
Jermyn, M. A. (1956). Increasing the sensitivity of the anthrone method for carbohydrate. Analytical Biochemistry, 1(2), 420–423. https://doi.org/10.1016/0003-2697(60)90038-6
Ji, Y., Liu, X., Tang, L., Li, Z., & Liu, S. (2023). Cold stress reduces wheat yield through impairment of physiological traits. Frontiers in Plant Science, 14, 1110192. https://doi.org/10.3389/fpls.2023.1110192
Kamruzzaman, M., Zhang, Y., Haque, M. A., & Wang, Z. (2023). Molecular markers linked to drought tolerance and proline accumulation in wheat under stress conditions. Euphytica, 219(4), 61. https://doi.org/10.1007/s10681-023-03512-w
Koua, M. H., Diouf, D., & Kane, N. A. (2022). Proline accumulation and its role in plant tolerance to abiotic stresses: A review. Plant Physiology and Biochemistry, 185, 1–10. https://doi.org/10.1016/j.plaphy.2022.04.001
Le Monde. (2024). Drought and frost slash European winter wheat yields by up to 40%. Le Monde Agricole. Retrieved from https://www.lemonde.fr
Li, H., Wang, X., & Chen, Y. (2023). Association mapping of cold tolerance in wheat using SSR markers. Crop Journal, 11(3), 345–356. https://doi.org/10.1016/j.cj.2022.09.005
Li, H., Zhang, Y., Liu, G., Wang, X., & Liu, J. (2022). Marker-assisted selection for cold tolerance in wheat using SSR-based association analysis. Molecular Breeding, 42, 49. https://doi.org/10.1007/s11032-022-01342-3
Li, Y., Zhao, J., Sun, S., Liu, Y., & He, W. (2023). Molecular mapping of quantitative trait loci associated with proline content and its impact on abiotic stress tolerance in wheat. Theoretical and Applied Genetics, 136(1), 95-112. https://doi.org/10.1007/s00122-022-03992-6
Livingston, D. P., Hincha, D. K., & Heyer, A. G. (2006). Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences, 63, 2759–2774. https://doi.org/10.1007/s00018-006-6160-7
Maccaferri, M., El-Feki, W., Nazemi, G., Salvi, S., Canè, M. A., Colalongo, M. C., ... & Tuberosa, R. (2015). Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of Experimental Botany, 67(1), 195–213. https://doi.org/10.1093/jxb/erv454
Malko, M., Novak, J., & Polakova, K. (2023). Impact of cold stress on wheat growth and physiological performance. Agronomy, 13(1), 12. https://doi.org/10.3390/agronomy13010012
Matros, A., Peshev, D., Peukert, M., Mock, H. P., & Van den Ende, W. (2019). Sugars as hydroxyl radical scavengers: Proof-of-concept by studying the fate of sucralose in Arabidopsis. The Plant Journal, 98(3), 509–526. https://doi.org/10.1111/tpj.14225
Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82(5), 525–532. https://www.jstor.org/stable/24105959
Perry, M. J., Liu, R., Xu, B., Zhang, J., & Xie, Q. (2024). Functional characterization of Ta1SST and Ta6SFT genes reveals their critical roles in fructan accumulation and abiotic stress tolerance in wheat. Plant Physiology and Biochemistry, 205, 107541. https://doi.org/10.1016/j.plaphy.2024.107541
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
Rahimi, M., Kahrizi, D., & Zarei, L. (2021). Application of SSR markers in plant breeding programs. Genetika, 53(2), 509–524. https://doi.org/10.2298/GENSR2102509R
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor Laboratory Press.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709
Tehran Times (2023). Iran ranks 13th in world wheat production in 2022. Retrieved from https://www.tehrantimes.com
Türkoğlu, A., Haliloğlu, K., Mohammadi, S. A., Öztürk, A., Bolouri, P., Özkan, G., Bocianowski, J., Pour-Aboughadareh, A., & Jamshidi, B. (2023a). Genetic Diversity and Population Structure in Türkiye Bread Wheat Genotypes Revealed by Simple Sequence Repeats (SSR) Markers. Genes, 14(6), 1182. https://doi.org/10.3390/genes14061182
Türkoğlu, F., Kaya, Y., & Aktaş, H. (2023b). Genetic diversity and population structure analysis of bread wheat (Triticum aestivum L.) genotypes using SSR markers. Cereal Research Communications, 51(2), 183–192. https://doi.org/10.1556/0806.2023.00012
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., ... & Cavanagh, C. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12(6), 787–796. https://doi.org/10.1111/pbi.12183
Wang, W., Cheng, Y., Chen, D., & Wang, H. (2022). Antioxidant response in plants to cold stress. Plant Cell Reports, 41(2), 315–328. https://doi.org/10.1007/s00299-021-02777-9
Wang, Y., Liu, J., & Chen, K. (2023). Heat stress in wheat: A global challenge to feed billions in the current era of the changing climate. Frontiers in Sustainable Food Systems, 7, 1203721. https://doi.org/10.3389/fsufs.2023.1203721
Yadav, S. K., & Sharma, R. K. (2021). Low temperature stress in wheat: Physiological and molecular insights. Plant Science Today, 8(4), 857–863. https://doi.org/10.14719/pst.2021.8.4.1104
Yang, H., Zhao, L., Liu, S., & Wei, Y. (2023). Application of SSR markers in association analysis for abiotic stress tolerance in crops. Molecular Genetics and Genomics, 298, 157–170. https://doi.org/10.1007/s00438-023-02090-4
Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., ... & Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38(2), 203–208. https://doi.org/10.1038/ng1702
Zhang, Y., Qiu, X., Yin, T., Liao, Z., Liu, B., & Liu, L. (2022). The impact of global warming on the winter wheat production of China. Agronomy, 12(1), 1845. https://doi.org/10.3390/agronomy12010123
Zhao, Y., Zhang, Y., Zhang, J., Liu, S., Yu, J., & Li, C. (2018). Incorporating population structure and kinship into GWAS for complex traits in maize. Theoretical and Applied Genetics, 131(1), 249–262. https://doi.org/10.1007/s00122-017-2998-1
Zhu, X., Li, Y., & Liu, Z. (2021). Wheat-based food products: Consumption trends and nutritional quality. Cereal Foods World, 66(3), 103–112.