Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., & Šantek, B. (2018). Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18(11), 768-778. https://doi.org/10.1002/elsc.201800039
Battan, B., Sharma, J., Dhiman, S. S., & Kuhad, R. C. (2007). Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry.
Enzyme and Microbial Technology,
41(6-7), 733-739.
https://doi.org/10.1016/j.enzmictec.2007.06.006
Domingues, S. Z., Timmers, L. F. S., & Granada, C. E. (2022). Cellulase production by bacteria is a strain-specific characteristic with a high biotechnological potential. A review of cellulosome of highly studied strains. Cellulose, 29(15), 8065-8083. https://doi.org/10.1007/s10570-022-04790-5
Eun, J.-S., Beauchemin, K., & Schulze, H. (2007). Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. Journal of Dairy Science, 90(3), 1440-1451. https://doi.org/10.3168/jds.S0022-0302(07)71629-6
Gandhi, A., & Oelmüller, R. (2023). Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses.
International Journal of Molecular Sciences,
24(19), 14762.
https://doi.org/10.3390/ijms241914762
Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281
Grasser, L., Fadel, J., Garnett, I., & DePeters, E. (1995). Quantity and economic importance of nine selected by-products used in California dairy rations. Journal of Dairy Science, 78(4), 962-971. https://doi.org/10.3168/jds.S0022-0302(95)76711-X
Gupta, M. N., & Bisaria, V. S. (2018). Stable cellulolytic enzymes and their application in hydrolysis of lignocellulosic biomass. Biotechnology Journal, 13(6), 1700633. https://doi.org/10.1038/s41586-024-07322-2
Hussain, M., Mirza, M., Nawaz, H., Asghar, M., & Ahmed, G. (2019). Effect of exogenous protease, mannanase, and xylanase supplementation in corn and high protein corn DDGS based diets on growth performance, intestinal morphology and nutrient digestibility in broiler chickens. Brazilian Journal of Poultry Science, 21(04), eRBCA-2019-1088. https://doi.org/10.1590/1806-9061-2019-1088
Jahani, M., Mohammadi-Nejad, G., Nakhoda, B., & Rieseberg, L. H. (2019). Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica, 215(6), 103. https://doi.org/10.1007/s10681-019-2426-1
Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145. https://doi.org/10.1007/s00253-003-1537-7
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Nagendran, R. (2011). Agricultural waste and pollution. Waste, Academic Press, https://doi.org/10.1016/B978-0-12-381475-3.10024-5
Nguyen, D. T., Gomez, L. D., Harper, A., Halpin, C., Waugh, R., Simister, R., Whitehead, C., Oakey, H., Nguyen, H. T., & Nguyen, T. V. (2020). Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw. Biotechnology for Biofuels, 13, 1-16. https://doi.org/10.1186/s13068-020-01807-8
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick Jr, W. J., Hallett, J. P., Leak, D. J., & Liotta, C. L. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484-489. https://doi.org/10.1126/science.1114736
Sardouei-Nasab, S., Mohammadi-Nejad, G., & Nakhoda, B. (2024). Identification of stable QTLs and candidate genes associated with plant height and spike length in common wheat. Crop and Pasture Science, 75 (1). https://doi.org/10.1071/CP23197
Sharma, D., Chaudhary, R., Kaur, J., & Arya, S. K. (2020). Greener approach for pulp and paper industry by Xylanase and Laccase. Biocatalysis and Agricultural Biotechnology, 25, 101604. https://doi.org/10.1016/j.bcab.2020.101604
Silveira, M. H. L., Morais, A. R. C., da Costa Lopes, A. M., Olekszyszen, D. N., Bogel‐Łukasik, R., Andreaus, J., & Pereira Ramos, L. (2015). Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem, 8(20), 3366-3390. https://doi.org/10.1002/cssc.201500282
Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., & Ball, A. (2016). Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 38, 190-197. https://doi.org/10.1016/j.copbio.2016.02.012
Tian, S.-Q., Zhao, R.-Y., & Chen, Z.-C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91, 483-489. https://doi.org/10.1016/j.rser.2018.03.113
Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095), 695-699. DOI:10.1126/science.1218930
Udhaya Kumar, M., Arockiam Jeyasundar, P. G. S., Ayyappa Das, M., Azeem, M., Manon Mani, V., & Ayswaria, R. (2025). Recombinant DNA Technology in the Improvement of Microbial Enzyme Production. Microbial Enzymes: Production, Purification and Industrial Applications, 2, 1-22. https://doi.org/10.1002/9783527844340.ch37
Vogt, E. T., & Weckhuysen, B. M. (2024). The refinery of the future. Nature, 629(8011), 295-306. https://doi.org/10.1002/biot.201700633
Wang, X., Pang, Y., Zhang, J., Zhang, Q., Tao, Y., Feng, B., Zheng, T., Xu, J., & Li, Z. (2014). Genetic background effects on QTL and QTL× environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. The Crop Journal, 2(6), 345-357. https://doi.org/10.1016/j.cj.2014.06.004
Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Wang, H., Xu, M., Zheng, B., & Zheng, J. (2018). Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports, 8(1), 1321. https://doi.org/10.1038/s41598-018-19517-5
Znameroski, E. A., & Glass, N. L. (2013). Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnology for Biofuels, 6, 1-8. https://doi.org/10.1186/1754-6834-6-6