نقش محافظتی اسپیرولینا در برابر ژنوتوکسیسیتی ناشی از سرب در موش‌ها با استفاده از آزمون کومِت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بهداشت عمومی، دانشکده دامپزشکی، دانشگاه بغداد، بغداد، عراق.

2 گروه بهداشت عمومی، دانشکده دامپزشکی، دانشگاه بغداد، بغداد، عراق

10.22103/jab.2025.25480.1723

چکیده

هدف: این مطالعه با هدف بررسی اثرات ژنوتوکسیک مواجهه با سرب (Pb) در سلول‌های خونی موش‌ها و ارزیابی توان محافظتی اسپیرولینا در برابر آسیب DNA ناشی از سرب با استفاده از آزمون الکتروفورز ژل سلول منفرد قلیایی (آزمون کومِت) انجام شد.
مواد و روش‌ها: هشتاد موش به‌صورت تصادفی به چهار گروه آزمایشی تقسیم شدند: گروه کنترل (آب آشامیدنی استاندارد)، گروه مواجهه با سرب (01/0 میلی‌گرم/لیتر استات سرب در آب آشامیدنی)، گروه اسپیرولینا (3 گرم/کیلوگرم اسپیرولینا در آب آشامیدنی) و گروه ترکیبی سرب + اسپیرولینا. دوره درمان سه ماه به طول انجامید. پس از پایان درمان، نمونه‌های خون جمع‌آوری و شکست‌های رشته‌ای DNA در لکوسیت‌ها با استفاده از آزمون کومت تحلیل شدند. اسلایدها با سه لایه آگارز تهیه، لیز و تحت الکتروفورز قلیایی قرار گرفتند. هسته‌ها با اتیدیوم بروماید رنگ‌آمیزی شدند و میزان آسیب DNA با استفاده از میکروسکوپ فلورسانس و نرم‌افزار CASP اندازه‌گیری شد.
نتایج: مواجهه با سرب به‌طور معنی‌داری درصد سلول‌های دارای آسیب متوسط و شدید DNA را نسبت به گروه کنترل افزایش داد که بیانگر اثرات ژنوتوکسیک شدید بود. در گروه سرب، کاهش چشمگیری در سلول‌های بدون آسیب (61/4±20/63) و افزایش قابل‌توجهی در سلول‌های با آسیب شدید (99/2±00/28) مشاهده شد. در مقابل، گروه سرب + اسپیرولینا کاهش قابل‌توجهی در آسیب DNA نشان داد، به‌طوری‌که 65/5±30/60 درصد از سلول‌ها بدون آسیب و تنها 98/2±00/26 دارای آسیب شدید بودند. اثر محافظتی اسپیرولینا از نظر آماری در مقایسه با گروه تنها سرب معنی‌دار بود و میزان آسیب DNA را به سطحی نزدیک به گروه کنترل رساند. این نتایج با گزارش‌های قبلی هم‌راستا هستند که نشان می‌دهند خواص آنتی‌اکسیدانی اسپیرولینا می‌تواند رادیکال‌های آزاد را خنثی کرده، استرس اکسیداتیو را محدود نموده و یکپارچگی DNA را حفظ کند.
نتیجه‌گیری: مواجهه مزمن با دوز پایین استات سرب باعث آسیب قابل توجه به DNA سلول‌های خونی موش‌ها می‌شود، که عمدتاً از طریق مکانیزم‌های اکسیداتیو و تداخل در سیستم‌های ترمیم DNA اتفاق می‌افتد. با این حال، مکمل‌یاری با اسپیرولینا به میزان 3.0 گرم/کیلوگرم به‌طور مؤثری این آسیب را کاهش می‌دهد و نقش آن را به‌عنوان یک عامل محافظ در برابر ژنوتوکسیسیتی ناشی از سرب برجسته می‌سازد. این نتایج بر پتانسیل اسپیرولینا به‌عنوان یک مداخله طبیعی برای کاهش اثرات مضر مواجهه محیطی با سرب تأکید دارند. مطالعات بیشتر برای بررسی اثربخشی اسپیرولینا در دوزها و دوره‌های مختلف مواجهه، و کاربرد احتمالی آن در راهبردهای بهداشت عمومی برای مقابله با سمیت فلزات سنگین توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Protective role of Spirulina against lead-induced genotoxicity in mice evaluated by the comet assay

نویسندگان [English]

  • Zamn. Saad AL-amary 1
  • Mohanad Falhi Hamood 2
1 Public Health Department College of Veterinary Medicine University of Baghdad. Baghdad, Iraq.
2 Public Health Department College of Veterinary Medicine University of Baghdad, Baghdad, Iraq.
چکیده [English]

Objective
This investigation aimed to evaluate the genotoxic effects of lead (Pb) exposure in murine blood cells and to evaluate the protective potential of spirulina against lead-induced DNA damage applying the alkaline single-cell gel electrophoresis (comet) assay.

Materials and Methods
Eighty mice were randomly assigned to four experimental groups: control (standard drinking water), Pb-exposed (0.01 mg/L lead acetate in drinking water), spirulina-only (3.0 g/kg spirulina in drinking water), and combined Pb + spirulina group. The treatment period lasted three months. Blood samples were gathered post-treatment, and DNA strand breaks in leukocytes were analyzed applying the comet assay. The slides were prepared applying three layers of agarose, lysed, and subjected to electrophoresis under alkaline conditions. Nuclei were stained with ethidium bromide, and DNA damage was quantified applying fluorescence microscopy and Comet Assay Software Project (CASP).

Results
Lead exposure meaningfully improved the percentage of cells exhibiting medium and high DNA damage compared to controls, denoting pronounced genotoxic effects. The Pb group showed a sharp decrease in undamaged cells (63.20 ± 4.61%) and a marked improve in highly damaged cells (28.00 ± 2.99%). In contrast, the Pb + spirulina group demonstrated a notable reduction in DNA damage, with 60.30 ± 5.65% of cells showing no damage and only 26.00 ± 2.98% exhibiting high damage. The protective effect of spirulina was statistically meaningful when compared to the Pb-only group, bringing DNA damage levels close to those observed in the control group. These results align with previous reports suggesting that spirulina's antioxidant properties can neutralize free radicals, limit oxidative stress, and stabilize DNA integrity.

Conclusions
Chronic exposure to low-dose lead acetate induces substantial DNA damage in murine blood cells, primarily through oxidative mechanisms and interference with DNA repair systems. However, spirulina supplementation at 3.0 g/kg effectively mitigates this damage, highlighting its role as a protective agent against lead-induced genotoxicity. These results underscore the potential of spirulina as a natural intervention for reducing the harmful effects of environmental lead exposure. Further investigations are recommended to investigate spirulina's effectiveness across varying dosages and exposure durations, and its possible application in public health strategies aimed at combating heavy metal toxicity.

کلیدواژه‌ها [English]

  • Comet assay
  • DNA damage
  • lead toxicity
  • oxidative stress
  • Spirulina
Ali, S., Naseer, S., Rehman, M., & Wei, Z. (2024). Recent trends and sources of lead toxicity: A review of state-of-the-art nano-remediation strategies. Journal of Nanoparticle Research, 26(7), 168. https://doi.org/10.1007/s11051-024-06081-5
Al-Obaidi, J. R., Alobaidi, K. H., Al-Taie, B. S., Wee, D. H.-S., Hussain, H., Jambari, N. N., Ahmad-Kamil, E. I., & Ariffin, N. S. (2021). Uncovering prospective role and applications of existing and new nutraceuticals from bacterial, fungal, algal and cyanobacterial, and plant sources. Sustainability, 13(7), 3671. https://doi.org/10.3390/su13073671
ALSalman, M. R. M., & Dawood, T. N. (2023). Concentration of lead, cadmium and mercury in the blood of human and sheep in the different governorate of Iraq. Journal of Kerbala for Agricultural Sciences, 10(1), 81–87. https://iasj.rdd.edu.iq/journals/uploads/2024/12/08/92f3c480fd12062982933a61a4fc6794.pdf
Alyasiri, T., Alchalabi, S., & AlMayaly, I. (2018). In vitro and in vivo antioxidant effect of Spirulina platensis against lead induced toxicity in rats. Asian Journal of Agriculture and Biology, 6(1), 66–77. https://www.cabidigitallibrary.org/doi/full/10.5555/20183255397
Atiyah, W. R., & Hamood, M. F. (2021). Enhancing the productive performance of broiler chickens by adding Spirulina platensis compared with probiotic, prebiotics, and oxytetracycline. The Iraqi Journal of Veterinary Medicine, 45(1), 31–36. https://doi.org/10.30539/ijvm.v45i1.1037
Barazandeh, A., Mohammadabadi, M. R., Ghaderi-Zefrehei, M., & Nezamabadi-Pour, H. (2016). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science, 61(11), 487–495. https://ideas.repec.org/a/caa/jnlcjs/v61y2016i11id78-2015-cjas.html
Breaker, R. R., & Joyce, G. F. (1994). A DNA enzyme that cleaves RNA. Chemistry & Biology, 1(4), 223–229. https://doi.org/10.1016/1074-5521(94)90014-0
Chu, W. L. (2011). Potential applications of antioxidant compounds derived from algae. Current Topics in Nutraceuticals Research, 9(3), 83–98. https://www.proquest.com/openview/535fa3389453614def5d2b5ba8ae1b4b/1?pq-origsite=gscholar&cbl=136101
Cordelli, E., Bignami, M., & Pacchierotti, F. (2021). Comet assay: A versatile but complex tool in genotoxicity testing. Toxicology Research, 10(1), 68–78. https://doi.org/10.1093/toxres/tfaa093
Gargouri, M., Akrouti, A., Magné, C., El Feki, A., & Soussi, A. (2020). Protective effects of spirulina against hemato-biochemical alterations, nephrotoxicity, and DNA damage upon lead exposition. Human & Experimental Toxicology, 39(6), 855–869. https://doi.org/10.1177/0960327120903490
Gargouri, M., Saad, H. B., Amara, I. B., Magné, C., & El Feki, A. (2016). Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats. Cellular and Molecular Biology, 62(10), 85–93. https://pubmed.ncbi.nlm.nih.gov/27609480/
Ghazi, M. A., & Al-Qaiym, M. A. (2023). Role of T. vulgaris in protection DNA damage induced by lead acetate in rats. Journal of Biotechnology Research Center, 17(1), 55–65. https://doi.org/10.24126/jobrc.2023.17.1.701
Golbamaki, N., Rasulev, B., Cassano, A., Robinson, R. L. M., Benfenati, E., Leszczynski, J., & Cronin, M. T. (2015). Genotoxicity of metal oxide nanomaterials: Review of recent data and discussion of possible mechanisms. Nanoscale, 7(6), 2154–2198. https://doi.org/10.1039/c5nr90036k
Hassan, H. A., Ahmed, H. S., & Hassan, D. F. (2024). Free radicals and oxidative stress: Mechanisms and therapeutic targets. Human Antibodies, 32(4), 151–167. https://doi.org/10.3233/HAB-240011
Kayaaltı, Z., Yavuz, İ., Söylemez, E., Bacaksız, A., Tutkun, E., Sayal, A., & Söylemezoğlu, T. (2015). Evaluation of DNA damage using 3 comet assay parameters in workers occupationally exposed to lead. Archives of Environmental & Occupational Health, 70(3), 120–125. https://doi.org/10.1080/19338244.2013.787964
Końca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Góźdź, S., Koza, Z., & Wojcik, A. (2003). A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research, 534(1–2), 15–20. https://doi.org/10.1016/s1383-5718(02)00251-6
Kumar, P., Tomar, S., Kumar, K., & Kumar, S. (2023). Transition metal complexes as self-activating chemical nucleases: Proficient DNA cleavage without any exogenous redox agents. Dalton Transactions, 52(21), 6961–6977. https://doi.org/10.1039/D3DT00368J
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48-78. https://doi.org/10.3390/oxygen2020006
Mohammadabadi, M. R., Torabi, A., Tahmourespoor, M., Baghizadeh, A. (2010). Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length. African Journal of Biotechnology, 9(41), 6848–6852.
Mohammadabadi, M., Akhtarpoor, A., Khezri, A., Babenko, O., Stavetska, R. V., Tytarenko, I., Ievstafiieva, Y., Buchkovska, V., Slynko, V. and Afanasenko, V. (2024). The role and diverse applications of machine learning in genetics, breeding, and biotechnology of livestock and poultry. Agricultural Biotechnology Journal, 16(4), 413-442. https://doi.org/10.22103/jab.2025.24662.1644
Nakata, H., Nakayama, S. M., Kataba, A., Yohannes, Y. B., Ikenaka, Y., & Ishizuka, M. (2021). Evaluation of the ameliorative effect of Spirulina (Arthrospira platensis) supplementation on parameters relating to lead poisoning and obesity in C57BL/6J mice. Journal of Functional Foods77, 104344.‏ https://doi.org/10.1016/j.jff.2020.104344
Nejad, F. M., Mohammadabadi, M., Roudbari, Z., Gorji, A. E., & Sadkowski, T. (2024). Network visualization of genes involved in skeletal muscle myogenesis in livestock animals. BMC Genomics, 25(1), Article 294. https://doi.org/10.1186/s12864-024-10196-3
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol. 2022 Jan 17;35(1):43-58. doi: 10.1021/acs.chemrestox.1c00255.
Saber, T. M., Elgaml, S. A., Ali, H. A., & Saleh, A. A. (2015). Protective effect of Spirulina platensis against aluminium-induced nephrotoxicity and DNA damage in rats. Toxicological & Environmental Chemistry97(8), 1113-1123.‏ https://doi.org/10.1080/02772248.2015.1091890
Salem AA, Ismail AFM. Protective impact of Spirulina platensis against γ-irradiation and thioacetamide-induced nephrotoxicity in rats mediated by regulation of micro-RNA 1 and micro-RNA 146a. Toxicol Res (Camb). 2021 Apr 28;10(3):453-466. doi: 10.1093/toxres/tfab037.
Salman, K. S., & Dawood, T. N. (2021). Study the Effects of Heavy Metals (Lead and Cadmium) on Some Biochemicalparameters of Dairy Cattle in Baghdad Province. Indian Journal of Forensic Medicine & Toxicology15(3), 3352-3358.‏ https://doi.org/10.37506/ijfmt.v15i3.15819
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res. 2024 Jul;202(7):3258-3277. doi: 10.1007/s12011-023-03924-5.
Sorelle, D. N., Narcisse, V. B., Momo, C. M. M., Herve, T., Ferdinand, N., & Joseph, T. (2023). Curative Effects of Spirulina (Spirulina platensis) Aqueous Extract on Reproductive Parameters and Oxidative Stress Markers in Female Guinea Pig (Cavia porcellus) Exposed to Lead. European Journal of Veterinary Medicine, 3(1), 6–11. https://doi.org/10.24018/ejvetmed.2023.3.1.65
Xiong, J., Zhou, M., Qu, C., Yu, D., Chen, C., Wang, M., & Tan, W. (2021). Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar. Biochar3, 37-49.‏ https://doi.org/10.1007/s42773-020-00077-9
Martemucci, G., Costagliola, C., Mariano, M., D’Andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006
Mohammadabadi, M. R., Torabi, A., Tahmourespoor, M., & Baghizadeh, A. (2010). Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length. African Journal of Biotechnology, 9(41), 6848–6852.
Mohammadabadi, M., Akhtarpoor, A., Khezri, A., Babenko, O., Stavetska, R. V., Tytarenko, I., Ievstafiieva, Y., Buchkovska, V., Slynko, V., & Afanasenko, V. (2024). The role and diverse applications of machine learning in genetics, breeding, and biotechnology of livestock and poultry. Agricultural Biotechnology Journal, 16(4), 413–442. https://doi.org/10.22103/jab.2025.24662.1644
Nakata, H., Nakayama, S. M., Kataba, A., Yohannes, Y. B., Ikenaka, Y., & Ishizuka, M. (2021). Evaluation of the ameliorative effect of Spirulina (Arthrospira platensis) supplementation on parameters relating to lead poisoning and obesity in C57BL/6J mice. Journal of Functional Foods, 77, 104344. https://doi.org/10.1016/j.jff.2020.104344
Nejad, F. M., Mohammadabadi, M., Roudbari, Z., Gorji, A. E., & Sadkowski, T. (2024). Network visualization of genes involved in skeletal muscle myogenesis in livestock animals. BMC Genomics, 25(1), Article 294. https://doi.org/10.1186/s12864-024-10196-3
Pan, J., Li, X., Wei, Y., Ni, L., Xu, B., Deng, Y., Yang, T., & Liu, W. (2022). Advances on the influence of methylmercury exposure during neurodevelopment. Chemical Research in Toxicology, 35(1), 43–58. https://doi.org/10.1021/acs.chemrestox.1c00255
Saber, T. M., Elgaml, S. A., Ali, H. A., & Saleh, A. A. (2015). Protective effect of Spirulina platensis against aluminium-induced nephrotoxicity and DNA damage in rats. Toxicological & Environmental Chemistry, 97(8), 1113–1123. https://doi.org/10.1080/02772248.2015.1091890
Salem, A. A., & Ismail, A. F. M. (2021). Protective impact of Spirulina platensis against γ-irradiation and thioacetamide-induced nephrotoxicity in rats mediated by regulation of micro-RNA 1 and micro-RNA 146a. Toxicology Research, 10(3), 453–466. https://doi.org/10.1093/toxres/tfab037
Salman, K. S., & Dawood, T. N. (2021). Study the effects of heavy metals (lead and cadmium) on some biochemical parameters of dairy cattle in Baghdad province. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3352–3358. https://doi.org/10.37506/ijfmt.v15i3.15819
Sharma, K., & Sharma, V. (2024). Allium sativum essential oil supplementation reverses the hepatic inflammation, genotoxicity and apoptotic effects in Swiss albino mice intoxicated with the lead nitrate. Biological Trace Element Research, 202(7), 3258–3277. https://doi.org/10.1007/s12011-023-03924-5
Sorelle, D. N., Narcisse, V. B., Momo, C. M. M., Herve, T., Ferdinand, N., & Joseph, T. (2023). Curative effects of Spirulina (Spirulina platensis) aqueous extract on reproductive parameters and oxidative stress markers in female guinea pig (Cavia porcellus) exposed to lead. European Journal of Veterinary Medicine, 3(1), 6–11. https://doi.org/10.24018/ejvetmed.2023.3.1.65
Xiong, J., Zhou, M., Qu, C., Yu, D., Chen, C., Wang, M., & Tan, W. (2021). Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar. Biochar, 3, 37–49. https://doi.org/10.1007/s42773-020-00077-9