استفاده از الیسیتورهای مختلف زنده و غیر زنده در کشت سوسپانسیون سلول فندق جهت بررسی تغییرات در بیان یکی از ژن‏های کلیدی در مسیر بیوسنتز تاکسول، 3- N-Debenzoyl-2-Deoxytaxoln-Benzoyltransferase (DBTNBT)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، بخش بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، ایران.

2 بخش بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، ایران.

10.22103/jab.2025.23315.1564

چکیده

چکیده فارسی
مقدمه:
پاکلیتاکسل (تاکسول) که داروی طبیعی موثر شیمی درمانی است، برای درمان طیف وسیعی از سرطان ها استفاده می شود. از نظر تاریخی، سرخدار (Taxus spp.) منبع اصلی تاکسول بوده است. در حال حاضر، فندق (Corylus avellana L.) را می توان به عنوان یک منبع ارزان و در دسترس برای تهیه تاکسول دانست. این مطالعه اثرات احتمالی الیسیتورهای مختلف را بر سطوح بیان ژن DBTNBT (3-N-debenzoyl-2-deoxytaxolN-benzoyltransferase) در کشت های سوسپانسیون سلولی فندق بررسی کرد. ژن DBTNBT یک ژن کلیدی درگیر در مسیر بیوسنتز تاکسول است.
مواد و روشها:
کشت سوسپانسیون سلولی فندق در MS مایع همراه با 2 میلی‏گرم در لیتر 2,4-D و 2/0 میلی‏گرم در لیتر BAP انجام شد. کشت های سلولی فندق با عصاره قارچی Cheatomium globosum در غلظت های 25، 50 و 100 میلی‏گرم در لیتر ، متیل جاسمونات (MeJA) (0، 100 و 200 میکرولیتر) و نیترات نقره (0، 15 و 30 میلی‏گرم در لیتر) تیمار شدند.
نتایج:
نتایج حاکی از اثرات مثبت الیسیتورها بر بیان ژن DBTNBT بود. به طوری که بالاترین سطح بیان ژن DBTNBT در کشت سوسپانسیون سلولی فندق تیمار شده با عصاره قارچی C. globosum در غلظت 50 میلی‏گرم در لیتر مشاهده شد و سطح بیان ژن DBTNBT در این غلظت 75/4 برابر نسبت به شاهد افزایش یافت. به طور مشابه، در کشت سوسپانسیون سلولی فندق با متیل جاسمونات، بیان ژن DBTNBT در غلظت 200 میکرولیتر 6/17 برابر در مقایسه با نمونه های شاهد افزایش یافت. علاوه بر این، هنگامی که غلظت AgNO3 دو برابر گردید و به 30 میلی گرم در لیتر رسید، میزان بیان ژن 14 برابر نسبت به تیمار شاهد افزایش یافت.
نتیجه گیری:
یافته های این مطالعه نشان می دهد بالاترین میزان بیان ژن DBTNBT مربوط به تیمار MeJA است، با وجود اینکه تمام تیمارهای بکار رفته قادر به افزایش موفقیت آمیز بیان ژن DBTNBT در کشت سوسپانسیون سلولی فندق بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Using Various Biotic and Abiotic Elicitors in Hazelnut Cell Suspension Cultures to Investigate the Expression of the 3-N-Debenzoyl-2-DeoxyTaxoln-Benzoyltransferase Gene in the Paclitaxel Biosynthesis Pathway

نویسندگان [English]

  • Raziyeh Bahrasmani Sardoo 1
  • Sara Alsadat Rahpeyma 2
  • Mehdi Mansouri 2
1 MS student of plant biotechnology, Department of Agricultural Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
2 Department of Agricultural Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده [English]

Background
Paclitaxel (PC) is a naturally occurring chemotherapeutic medication used to treat various malignancies. Hazelnut (Corylus avellana L.) is currently a readily available and affordable Paclitaxel source. In this study, the potential effects of some biotic and abiotic elicitors were investigated on expression levels of the DBTNBT gene (3-N-debenzoyl-2-deoxytaxolN-benzoyltransferase) in cell suspension cultures of C. avellana. The DBTNB gene is one of the key genes in the downstream biosynthesis pathway of Paclitaxel.
Materials and methods
Hazelnut yellow friable calli taken from and often subcultured in MS media, supplemented with 2,4-D (2 mg/L) and BAP (0.2 mg/L), was suspended in liquid MS of the same composition. The elicitors methyl jasmonate (MeJA) (0, 100, and 200 (µL)), silver nitrate (0, 15, and 30 (mg/L)), or fungus extract (0, 25, 50, and 100 (mg/L)) were applied to the hazelnut cell cultures for 48 hours during the middle growth phase.
Results
The present study demonstrated the inductive effects of the elicitors on the expression of the DBTNBT gene. Compared to the control samples, in the C. avellana cell suspension culture, DBTNBT gene expression was affected positively by MeJA, and the most increase in DBTNBT gene expression (17.6-fold) was obtained from the treatment of 200 µL MeJA. The rate of gene expression rose considerably, up to 14 times greater than that of the control, when the concentration of AgNO3 was increased to 30 mg/L. Fungal extract affected DBTNBT gene expression; a suspension culture of C. avellana cells treated with 50 mg/L fungal extracts of C. globosum revealed a 4.75-fold increase in DBTNBT gene expression relative to the reference. However, 100 mg/L of C. globosum extracts reduced gene expression compared to the control.
Conclusions
MeJA had the highest degree of DBTNBT gene expression of any elicitor therapy used in this investigation, however all applied elicitation treatments were able to successfully increase the DBTNBT gene expression in hazelnut cell suspension cultures.

کلیدواژه‌ها [English]

  • Corylus avellana
  • DBTNBT
  • gene expression
  • paclitaxel
  • qRT‒PCR
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., & Rollinger, J. M. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Barrett, L. G., Heil, M. (2012). Unifying concepts and mechanisms in the specificity of plant–enemy interactions. Trends in plant science 17(5), 282-292. https://doi.org/10.1016/j.tplants.2012.02.009 
Chopra, B., Dhingra, A. K., Dhar, K. L. & Nepali, K. (2021). Emerging Role of Terpenoids for the Treatment of Cancer: A Review. Mini Reviews in Medicinal Chemistry, 21(16), 2300-2336. https://doi.org/10.2174/1389557521666210112143024
Christen, A. A., Gibson, D. M., & Bland, J. (1991). Production of Taxol or Taxol-like compounds in cell culture.  U.S. Patent No. 5,019,504. Washington, DC: U.S. Patent and Trademark Office.
Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and Medicinal Uses of Terpenes. In: Joshee, N., Dhekney, S.A., & Parajuli, P. (Eds), Medicinal Plants: from farm to pharmacy. (pp. 333-359). Springer, Cham. https://doi.org/10.1007/978-3-030-31269-5_15
Eum, D.Y., Byun, J.Y., Yoon, C.H. Seo, W.D., Park, K.H., Lee, J.H., Chung, H.Y., An, S., Suh, Y., Kim, M. J., & Lee, S. J. (2011). Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anti-Cancer Drugs, 22(8), 763-773. https://doi.org/10.1097/CAD.0b013e328347181a
Gallego, A., Imseng, N., Bonfill, M., Cusido, R. M., Palazon, J., Eibl, R., & Moyano, E. (2015). Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. Journal of biotechnology195, 93-102. https://doi.org/10.1016/j.jbiotec.2014.12.023
Ghanati, F., Rezaei, A., & Behmanesh, M. (2011). Increased Taxol production and release by methyl jasmonate, ultrasound, and dibutyl phthalate in hazelnut (Corylus avellana L.) cell culture. Iran Journal of Plant Biological Sciences3 (7), 55-72. https://dor.isc.ac/dor/20.1001.1.20088264.1390.3.7.6.2
Goktepe-Atilgan, I., Dogan, A., & Ari, S. (2023). Enhancement of taxane production in cell suspension culture of Corylus avellana L. Kalınkara by elicitation and precursor feeding. Biotechnology & Biotechnological Equipment, 37(1), 2255703. https://doi.org/10.1080/13102818.2023.2255703
Hefner, J., Ketchum, R. E., & Croteau, R. (1998). Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase fromtaxus canadensisand assessment of the role of this prenyltransferase in cells induced for Taxol production. Archives of biochemistry and biophysics, 360(1), 62-74. https://doi.org/10.1006/abbi.1998.0926
Hoffman, A., & Shahidi, F. (2009). Paclitaxel and other taxanes in hazelnut. Journal of Functional Foods, 1(1), 33-37. https://doi.org/10.1016/j.jff.2008.09.004
Isah, T. (2015). Natural Sources of Taxol. British Journal of Pharmaceutical Research, 6(4), 214-227. https://doi.org/10.9734/BJPR/2015/16293
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological research, 52: 39. http://dx.doi.org/10.1186/s40659-019-0246-3 
Khosroushahi, A. Y., Valizadeh, M., Ghasempour, A., Khosrowshahli, M., Naghdibadi, H., Dadpour, M. R., & Omidi, Y. (2006). Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell biology international, 30(3), 262-269. https://doi.org/10.1016/j.cellbi.2005.11.004
Lan, W., Yu, Lm, Li, M.Y, & Qin, W.M. (2003). Cell death unlikely contributes to Taxol production in fungal elicitor-induced cell suspension cultures of Taxus chinensis. Biotechnology Letters, 25, 47-49. https://doi.org/10.1023/A:1021726030724
Lenka, S. K., Nims, N. E., Vongpaseuth, K., Boshar, R. A., Roberts, S. C., & Walker, E. L. (2015). Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Frontiers in plant science, 6: 13. https://doi.org/10.3389/fpls.2015.00115
Li, F. S., & Weng, J. K. (2017). Demystifying traditional herbal medicine with modern approach. Nature plants, 3(8), 1-7. https://doi.org/10.1038/nplants.2017.109
Maheshwari, P., Garg, S., & Kumar, A. (2008). Taxoids: biosynthesis and in vitro production. Biotechnology and Molecular Biology Reviews, 3(4), 71-87. http://org/doi/full/10.5555/20093008305
Nims, E., Dubois, C. P., Roberts, S. C., & Walker, E. L. (2006). Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metabolic Engineering, 8(5), 385-394. https://doi.org/10.1016/j.ymben.2006.04.001
Onrubia, M., Moyano, E., Bonfill, M., Expósito, O., Palazón, J., & Cusidó, R. M. (2010). An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: the role of txs and bapt gene expression. Biochemical Engineering Journal53(1), 104-111. https://doi.org/10.1016/j.bej.2010.10.001
Raeispour Shirazi, M., Rahpeyma, S. A., Rashidi Monfared, S., Zolala, J., & Lohrasbi-Nejad, A. (2021). Identification and in-silico characterization of taxadien-5α-ol-O-acetyltransferase (TDAT) gene in Corylus avellana L. PLOS One, 16(8), e0256704. https://doi.org/10.1371/journal.pone.0256704
Rahpeyma, S. A., Moieni, A., & Jalali-Javaran, M. (2017). Enhancement of paclitaxel content in induced tetraploid Corylus avellana L. cell suspension culture with regulating the expression of genes in paclitaxel biosynthetic pathway.  Acta Physiologiae Plantarum, 39(10), 241. https://doi.org/10.1007/s11738-017-2531-5
Rezaei, A., Ghanati, F., Behmanesh, M., & Mokhtari-Dizaji, M. (2011a). Ultrasound-potentiated salicylic acid–induced physiological effects and production of Taxol in hazelnut (Corylus avellana L.) cell culture. Ultrasound in medicine & biology, 37(11), 1938-1947. https://doi.org/10.1016/j.ultrasmedbio.2011.06.013
Rezaei, A., Ghanati, F., & Dehaghi, M. A. (2011b). Stimulation of Taxol production by combined salicylic acid elicitation and sonication in Taxus baccata cell culture. In: International Conference on Life Science and Technology, 3, 193-197. IACSIT Press, Singapore.
Salehi, M., Moieni, A., & Safaie, N. (2018). Elicitors derived from hazel (Corylus avellana L.) cell suspension culture enhance growth and paclitaxel production of Epicoccum nigrum. Scientific reports, 8(1), 12053. https://doi.org/10.1038/s41598-018-29762-3
Salehi, M., Moieni, A., Safaie, N., & Farhadi, S. (2019). Elicitors derived from endophytic fungi Chaetomium globosum and Paraconiothyrium brasiliense enhance paclitaxel production in Corylus avellana cell suspension culture. Plant Cell, Tissue and Organ Culture, 136(1), 161-171. https://doi.org/10.1007/s11240-018-1503-9
Salehi, M., Moieni, A., Safaie, N., & Farhadi, S. (2020). Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLOS One 15(7), e0236191. https://doi.org/10.1371/journal.pone.0236191
Shirazi, M. R., Rahpeyma, S. A., & Zolala, J. (2020). A new approach to prevent hazelnut callus browning by modification of sub-culture. Biologia plantarum, 64(1), 417-421. https://doi.org/10.32615/bp.2020.009
Somssich, I. E., & Hahlbrock, K. (1998). Pathogen defence in plants—a paradigm of biological complexity. Trends in plant Science, 3(3), 86-90. https://doi.org/10.1016/S1360-1385(98)01199-6
Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260(5105), 214-216. https://doi.org/10.1126/science.8097061
Strobel, G. A., Stierle, A., & van Kuijk, F. J. (1992). Factors influencing the in vitro production of radiolabeled Taxol by Pacific yew, Taxus brevifolia. Plant Science, 84(1), 65-74. https://doi.org/10.1016/0168-9452(92)90209-5
Tashackori, H., Sharifi, M., Chashmi, N. A., Behmanesh, M., & Safaie, N. (2018). Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta, 248(5) 1289-1306. https://doi.org/10.1007/s00425-018-2973-z
Tatsis, E. C., & O’Connor, S. E. (2016). New developments in engineering plant metabolic pathways. Current opinion in biotechnology, 42, 126-132. https://doi.org/10.1016/j.copbio.2016.04.012
Vongpaseuth, K., & Roberts, S. C. (2007). Advancements in the understanding of paclitaxel metabolism in tissue culture. Current pharmaceutical biotechnology, 8(4), 219-236. https://doi.org/10.2174/138920107781387393
Walker, K., Long, R., & Croteau, R. (2002). The final acylation step in Taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proceedings of the National Academy of Sciences, 99(14), 9166-9171. https://doi.org/10.1073/pnas.082115799
Wang, C., Wu, J., & Mei, X. (2001). Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Applied microbiology and biotechnology, 55(4), 404-410. https://doi.org/10.1007/s002530000567
Wang, Y., Dai, C. C., Cao, J. L., & Xu, D. S. (2012). Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World Journal of Microbiology and Biotechnology, 28(2), 575-584. https://doi.org/10.1007/s11274-011-0850-z
Wang, Z. Y., & Zhong, J. J. (2002). Repeated elicitation enhances taxane production in suspension cultures of Taxus chinensis in bioreactors. Biotechnology letters, 24(6), 445-448. https://doi.org/10.1023/A:1014549008516
Wilson, S. A., & Roberts, S. C. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant biotechnology journal, 10(3), 249-268. https://doi.org/10.1111/j.1467-7652.2011.00664.x
Yuan, J., Sun, K., Deng-Wang, M. Y., & Dai, C. C. (2016). The Mechanism of Ethylene Signaling Induced by Endophytic Fungus Gilmaniella sp. AL12 Mediating Sesquiterpenoids Biosynthesis in Atractylodes lancea. Frontiers in Plant Science, 7: 361. https://doi.org/10.3389/fpls.2016.00361.
Yuan, Y. J., Li, C., Hu, Z. D., Wu, J. C., & Zeng, A. P. (2002). Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var. mairei for Taxol production. Process Biochemistry, 38(2), 193-198. https://doi.org/10.1016/S0032-9592(02)00071-7
Zhai, X., Jia, M., Chen, L., Zheng, C. J., Rahman, K., Han, T., & Qin, L. P. (2017). The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Critical reviews in microbiology, 43(2), 238-261. https://doi.org/10.1080/1040841X.2016.1201041
Zhang, C. H., & Wu, J. Y. (2003). Ethylene inhibitors enhance elicitor-induced paclitaxel production in suspension cultures of Taxus spp. cells. Enzyme and microbial technology, 32(1), 71-77. https://doi.org/10.1016/S0141-0229(02)00266-1
Zhang, J. F., Gong, S., & Guo, Z. G. (2011). Effects of different elicitors on 10‐deacetylbaccatin III‐10‐O‐acetyltransferase activity and cytochrome P450 monooxygenase content in suspension cultures of Taxus cuspidata cells. Cell Biology International Reports, 18(1), 7-13. https://doi.org/10.1042/CBR20110001
Zhang, Y., Wiese, L., Fang, H., Alseekh, S., de Souza, L. P., Scossa, F., ... & Fernie, A. R. (2023). Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. Molecular Plant, 16(12), 1951-1961. https://doi.org/10.1016/j.molp.2023.10.016
Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances, 23(4), 283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003