ارتباط نشانگری و تنوع ژنتیکی صفات زراعی گلرنگ (Carthamus tinctorius L.) با استفاده از نشانگر AFLP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 استادیار/بهنزادی گیاهی پژوهشکده فناوری تولیدات گیاهی/ دانشگاه باهنر کرمان

3 دانشیار اصلاح نباتات، قطب علمی تنش‌های محیطی در غلات، دانشکده کشاورزی دانشگاه شهید باهنر کرمان

چکیده

هدف: این آزمایش با هدف بررسی تنوع ژنتیکی، تعیین بهترین ساختار ژنتیکی و تجزیه ارتباطی گلرنگ با استفاده از نشانگر AFLP جهت شناسایی نشانگرهای پیوسته با صفات زراعی مختلف انجام شد.
مواد و روش‌ها: در این مطالعه 17 ژنوتیپ‌ گلرنگ به صورت طرح بلوک کامل تصادفی با 3 تکرار در مزرعه تحقیقاتی دانشگاه شهید باهنر کرمان در سال 1395 کشت گردیدند. صفات فنوتیپی شامل عملکرد دانه، ارتفاع بوته، تعداد قوزه در بوته، تعداد دانه در قوزه، وزن هزار دانه، قطر قوزه، روز تا 50% گلدهی و روز تا رسیدگی اندازه­گیری شد. تکنیک AFLPبا استفاده از هشت ترکیب آغازگری EcoRI و MseI انجام شد.
نتایج: در کل 147 باند چند شکل با میانگین 58/81 درصد چندشکلی ایجاد شد. تجزیه کلاستر بر اساس روش الگوبندی UPGMA و معیار جاکارد ژنوتیپ‌های گلرنگ را به دو گروه تقسیم کرد. تعداد 45 و 39 نشانگر به ترتیب بر اساس مدل GLM و MLM ارتباط معنی‌دار با صفات مورد مطالعه داشتند. نشانگرهای M14/E6-10، M14/E11-16، M14/E11-13، M3/E10-14 و M4/E36-12 با عملکرد دانه، M3/E10-12، M3/E36-29، M59/E36-21 و M14/E11-10 با تعداد قوزه در بوته، M4/E36-8، M59/E36-21، M3/E10-9، M14/E11-14 و M14/E11-13 با تعداد دانه در قوزه، M4/E36-19،12  M4/E36-، M14/E11-1 و M4/E10-1 با وزن هزار دانه، M4/E10-2، M59/E36-21، M3/E36-30  و M4/E36-24 با ارتفاع گیاه، M3/E36-24، M3/E36-6، M3/E10-20 و M4/E36-18  با قطر قوزه، M14/E11-10، M3/E36-30 و M59/E36-21 با روز تا 50% گلدهی و M14/E11-10 و M59/E36-21 با روز تا رسیدگی در هر دو مدل همبستگی معنی‌دار نشان دادند.
نتیجه‌گیری: نشانگرهای AFLP مشخص شده با اثرات قوی در این مطالعه می‌تواند کاندیدهای مناسبی برای انتخاب به کمک نشانگر در برنامه‌های اصلاحی و تبدیل به نشانگرهای اختصاصی دیگر باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Marker association and genetic variation of agronomic traits in safflower )Carthamus tinctorius L.( using AFLP marker

نویسندگان [English]

  • Lida Soltani 1
  • Fatemeh Ebrahimi 2
  • Qasem Mohammadi Nezhad 3
1 . M. Sc. Graduate, College of Agriculture, Shahid Bahonar University of Kerman
2 Assistant Professor, Research & Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Iran.
3 Associate Professor, College of Agriculture and Research & Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Iran
چکیده [English]

Objective
This experiment was conducted in order to assess genetic variation, determine of the best genetic structure and association analysis of safflower to identify markers associated with different agronomic traits.
 
          Materials and methods
In this study, 17 genotypes of safflower were planted as the randomised complete block design at research farm of Shahid Bahonar University of Kerman in 2016. Traits including seed yield, plant height, number of capitulum per plant, number of seed per capitulum, 1000- seed weight, capitulum diameter, day to 50% flowering and day to maturity were measured. The AFLP Technique was performed by the eight EcoR1/Mse1 primer combinations.
          Results
In total, 147 polymorphic bands were generated with average 81.58 polymorphic percentage. Cluster analysis using UPGMA and Jacard as similarity index discriminated safflower genotypes into two groups. Based on GLM and MLM model, 45 and 39 markers had significant association with the studied traits, respectively. M14/E6-10, M14/E11-16, M14/E11-13, M3/E10-14 and M4/E36-12 markers with seed yield, M3/E10-12, M3/E36-29, M59/E36-21 and M14/E11-10 with capitulum number per plant, M4/E36-8, M59/E36-21, M3/E10-9, M14/E11-14 and M14/E11-13 with number of seed per capitulum, M4/E36-19, M4/E36-12, M14/E11-1 and M4/E10-1 with 1000- seed weight, M4/E10-2, M59/E36-21, M3/E36-30, M4/E10-11 and M4/E36-24 with plant height, M3/E36-24, M3/E36-6, M3/E10-20 and M4/E36-18 with capitulum diameter, M14/E11-10, M3/E36-30 and M59/E36-21 with day to 50% flowering, M14/E11-10 and M59/E36-22 markers with day to maturity in both models.
 
         Conclusions
Detected AFLP markers with strong effects in this study could be desirable                                                                                                                                              candidates for the marker-assisted selection in breeding programs and conversion into other specific markers.

کلیدواژه‌ها [English]

  • Association analysis
  • marker coefficient of determination
  • cluster analysis
  • mixed linear model
موسوی دراز محله مهسا؛ زین ‌العابدینی مهرشاد؛ مردی محسن؛ مرعشی حسن؛ ملک‌ زاده سعید؛ کاظمی مهربانو؛ رودبار شجاعی طه؛ زهراوی مهدی (1392) بررسی تنوع ژنتیکی و تجزیه ساختار جمعیت ژرم‌پلاسم انار شیرین ایران با استفاده از نشانگر‌های SSR. مجله بیوتکنولوژی کشاورزی 4 (5)، 138- 150.
نقوی محمد رضا؛ قره یاضی بهزاد؛ حسینی سالکده قاسم (1387) نشانگرهای مولکولی. چاپ و انتشارات دانشگاه تهران، 109-121.
 
References
Achleitner A, Tinker N, Zechner E, Buerstmayr H (2008) Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet 117, 1041-1053.
Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163, 21–30.
Badfar-Chaleshtori S, Shiran B, Kohgard M et al. (2012) Assessment of genetic diversity and structure of imperial crown (Fritillaria imperialis L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochem Syst Ecol 42, 35- 48.
Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46, 1323–1330.
Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5, 107-111.
Dadras AR, Sabouri H, Mohammadinejad Gh et al. (2014) Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol Biol Rep 41, 3317-3329.
Ebrahimi F, Majidi MM, Arzani A, Mohammadinejad Gh (2017) Association analysis of molecular markers with traits under drought stress in safflower. Crop Pasture Sci 68, 167-175.   
Esposito MA, Gatti1 I, Cravero VP et al. (2013) Combining abilities and heterotic groups in Pisum sativum L. Aust J Crop Sci 7, 1634-1641.
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14, 2611- 2620.
Gepts P (2006) Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci 46, 2278-2292.
Golkar P, Arzani A, Rezaei M (2011) Determining relationships among seed yield, yield components and morpho-phenological traits using multivariate analysis in safflower (Carthamus tinctorius L.). Ann Biol Res 2, 162-169.
Hussain MI, Lyra DA, Farooq M et al. (2016) Salt and drought stresses in safflower. Agron Sustain Dev 36, 1- 31.
Janmohammadi M, Mohammadi N, Shekari F et al. (2017) The effects of silicon and titanium on safflower (Carthamus tinctorius L.) growth under moisture deficit condition. Acta Agric Slovenica 109, 443-455.
Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47, 1728-1736.
Kotcha A (1979) Inheritance and association of six traits in safflower. Crop Sci 19, 523-527.
Kraakman ATW, Niks RE, Van Den Berg PMM et al. (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168, 435–446.
Kumar S, Ambreen H, Murali TV et al. (2015) Assessment of genetic diversity and population structure in a global reference collection of 531 accession of Carthamus tinctorius L. (safflower) using AFLP markers. Plant Mol Biol 33, 1299-1313.
Lagudah ES, McFadden H, Singh RP et al. (2006) Molecular genetic characterisation of the
             Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114, 21–30.
Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3, 91-99.
Mahasi MJL, Wachira FN, Pathak RS, Riungu TC (2009) Genetic polymorphism in exotic safflower (Carthamus tinctorius L.) using RAPD markers. Plant Breed Crop Sci 1, 8-12.
Manifesto MM, Schlatter AS, Hopp HE et al. (2001) Quantitative evaluation of genetic diversity germplasm using molecular markers. Crop Sci 41, 682-690.
Mousavi Derazmahalleh SM, Zeinalabedini M, Mardi M et al. (2014) The Survey of Genetic Diversity & Population Structure Analysis of Iranian Sweet Pomegranate (Punica granatum L.) Germplasm Using SSR Markers. Agric Biotech 4, 139-150 (in Persian).
Naghavi MR, Gharehyazi B, Hoseini Salekedeh Gh (2008) Molecular markers. University of Tehran Press. UK, pp 109-121 (In Persian).
Peakall R, Smouse P (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. J Bioinform 1, 6- 8.
Powell W, Morgante M, Andre C et al. (1996) The comparison of RFLP, RAPD, AFLP and SSRP (microsatellite) markers for germplasm analysis. Mol Breeding 2, 225- 238.
Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. J Genet 44, 559-571.
Rostok N, Ramsay L, MacKenzie K et al. (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbreed crop varieties. Proc Natl Acad Sci U S A 103, 18656-18661.
Shahbazi E, Saeidi G (2007) Genetic analysis for yield components and other agronomic characters in safflower (Carthamus tinctorius L.). Genet Breed 36, 11- 20.
Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech 27, 379- 423.
Shi J, Li R, Qiu D, Jiang C et al. (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. J Genet 182, 851-861.
Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor (L.) Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101, 733- 741.
Vanniarajan C, Vinod KK, Pereira A (2012) Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa L.). J Genet 91, 1-11.
Vos P, Hogers R, Bleeker M et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23, 4407- 4414.
Weising K, Nybom H, Wolff K, Kahl G (2005) Applications of DNA fingerprinting in plant sciences. In ‘DNA fingerprinting in plants. Principles, methods and applications’. Weising K, Nybom H, Pfenninger M, Wolff K, Kahl G (eds). pp. 235- 276.
Yu J, Pressoir G, Briggs WH et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38, 203- 208.
Zhang Y, Uyemoto Jk, Kirkpatrick BC (1998) A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. J Virol Methods 71, 45-50.
Zhang Q, Wu C, Ren F et al. (2012) Association analysis of important traits of agronomical maize inbred lines with SSRs. Crop Sci 6, 1131- 1138.
Zhao W, Wang Y, Chen T et al. (2007) Genetic structure of mulberry from different ecotypes revealed by ISSRs in china: An implications for conservation of local mulberry varieties. Sci Hortic 115, 47-55.