بهینه‌سازی کشت بافت و انتقال سازه حاوی ژن GME کیوی به گیاه کاهو (Lactuca sativa L. )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 استادیار گروه زراعت و اصلاح نباتات دانشکده کاورزی دانشگاه رازی کرمانشاه-استادیار گروه پژوهشی بیوتکنولوژی مقاومت به خشکی دانشگاه رازی کرمانشاه

3 دکتری بیوتکنولوژی کشاورزی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

هدف: کاهو به دلیل سازگاری با کشت ‌بافت و انتقال پایدار ژن، یک گیاه مدل برای پژوهش‌های علوم بیوتکنولوژی محسوب می‌گردد. ژن GDP-mannose-3´,5´-epimerase (GME) یکی از ژن‌های کلیدیِ مسیر بیوسنتز ویتامین ث در گیاهان می‌باشد. در این تحقیق این ژن که از منبع کیوی جداسازی شده است به گیاه کاهو منتقل شد.
مواد و روش‌ها: به‌منظور بهینه‌سازی کشت بافت کاهو آزمایش‌هایی جهت بررسی میزان کالوس‌زایی و باززایی غیرمستقیم با استفاده از اثرات نوع ریز نمونه (برگ لپه‌ای و برگ‌های حقیقی) و 16 ترکیب تنظیم کننده رشد مختلف شامل غلظت‌های 1/0، 02/0، 05/0 و 04/0 میلی‌گرم بر لیتر NAA و غلظت‌های 1/0، 2/0، 4/0 و 6/0 میلی‌گرم بر لیتر BAP و جهت بررسی باززایی
غلظت‌های 2/0، 4/0 و 6/0 میلی‌گرم بر لیتر BAP با سه تکرار به صورت آزمایش فاکتوریل در قالب طرحِ کاملاً تصادفی اجرا شدند. جهت انتقال ژن GME به این گیاه نیز آزمایشی با استفاده از رقم ستاره و سویه آگروباکتریوم (C58) روی دو نوع ریز نمونه (برگ لپه‌ای‌ و برگ‌های حقیقی) و با مدت زمان تلقیح دو و هشت دقیقه با سه تکرار به صورت فاکتوریل در قالب طرحِ کاملاً تصادفی انجام شد.
نتایج: نتایج حاصل از مقایسه میانگین‌ها نشان داد که در ریز نمونه‌های برگ حقیقی و برگ لپه‌ای غلظت‌های 1/0 میلی‌گرم بر لیتر BAP و 04/0 میلی‌گرم بر لیتر NAA بیشترین کالوس‌زایی و باززایی غیرمستقیم را به میزان 100 درصد داشتند. نتایج حاصل از آزمایش انتقال ژن به کاهو حضور سازه موردنظر را در گیاهان تراریخته تأیید کرد.
نتیجه‌گیری: در آزمایش انتقال ژن، ریز نمونه برگ‌های حقیقی و مدت زمان تلقیح دو دقیقه با میزان 18 درصد تراریختی مناسب‌تر بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of tissue culture and transformation of construct contain GDP-mannose-3´, 5´-epimerase (GME) gene from actinidia deliciosa L. into Lactuca sativa L

نویسندگان [English]

  • Behnaz Aghayani 1
  • Alireza Zebarjadi 2
  • Zeynab Cheghakaboodi 3
1 Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
چکیده [English]

Objective
Lettuce is considered as a model plant for biotechnology because of its compatibility with stable genetic transformation and tissue culture. GDP-mannose-3’,5’-epimerase (GME) is one of the key genes in ascorbic acid biosynthesis pathway in plants. The present study aims to transfer GME gene from Actinidia deliciosa L. into Lactuca sativa L.
 
Materials and Methods
To investigate callus induction rate using the effects of explant (cotyledon and true leaves) and 16 plant growth regulator combination including concentrations of 0.02, 0.04, 0.05, and 0.1 mg/l NAA and 0.1, 0.2, 0.4, and 0.6 mg/l BAP, and also direct regeneration rate using the effects of explant (cotyledon and true leaves) and 6 plant growth regulator combination including concentrations of 0.02 and 0.05 mg/l NAA and 0.2, 0.4, and 0.6 mg/l BAP, a factorial experiment based on completely randomized design with three replications was conducted. In order to transform GME into Lactuca sativa L. using L. sativa L. cv. Setareh and Agrobacterium tumefaciens strain (C58) on two types of explants (cotyledon and true leaves), a factorial experiment with three replications and 2 min and 8 min inoculation was done.
 
Results
The results revealed that the highest percentage of callus induction and indirect regeneration (100%) were observed on leaf and cotyledon explants and MS medium containing 0.1 mg/l BAP and 0.04 mg/l NAA. The results also confirmed the presence of pBI121+GME in transgenic plants.
 
Conclusions
The explant true leaves and 2 min inoculation (with 18 percent transformation ratio) were more suitable for transformation.

کلیدواژه‌ها [English]

  • GME
  • Lettuce
  • Micro-propagation
  • Transformation
  • Vitamin C
اکبری لیلا‌‌‍‍‍‍؛ چقامیرزا کیانوش؛ فرشادفر عزت اله (1395) بررسی تحمل به خشکی ژنوتیپ‌های گندم دوروم در شرایط درون شیشه‌ای. مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران) 29، 285-273.
محب الدینی مهدی؛ جلالی جواران مختار؛ علیزاده هوشنگ؛ مهبودی فریدون؛ خسروی حسین (1389) بهینه‌سازی روش کشت بافت و سیستم انتقال ژن در گیاه کاهو (Lactuca sativa L.). نشریه علوم باغبانی (علوم و صنایع کشاورزی) 24، 202-195.
نجار خدابخش آزاده؛ چاپارزاده نادر (1394) نقش آسکوربیک اسید در تقلیل اثرات اکسیداتیو شوری روی گیاه شاهی. مجله پژوهش‌های گیاهی 28، 175-185.
هنری حسین؛ علیزاده هوشنگ؛ شاه نجات بوشهری علی اکبر؛ پیغمبری سید علی؛ جلالی جواران مختار؛ براهمیپور روح اله (1391) عوامل موثر در انتقال ژن گزارشگر uidA با استفاده از اگروباکتری به گیاه کاهو (Lactuca sativa L.). مجله علوم باغبانی ایران 43، 91-101.
هنری حسین؛ علیزاده هوشنگ؛ شاه نجات بوشهری علی اکبر؛ پیغمبری سید علی؛ جلالی جواران مختار (1387) باززایی درون شیشه‌ای ارقام کاهوی (Lactuca sativa L.) ایرانی. مجله علوم گیاهان زراعی ایران 39، 173-180.
 
References
Akbari L, Cheghamirza K, Farshadfar E (2016) In vitro evaluation of drought tolerance in durum wheat genotypes (Triticum durum L.). J of Plant Res (Iranian J of Biol) 29, 273-285 (In Persian).
Armas I, Pogrebnyak N, Raskin I (2017) A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Meth 13, 58-66.
Bulley SM, Laing W (2016) Ascorbic Acid-Related Genes. In: The Kiwifruit Genome. Testolin R, Huang HW, Ferguson AR (eds). Springer, Switzerland pp, 163-177.
Darqui FS, Radonic LM, López N et al. (2018) Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce. Elect J of Biotechnol 31, 1-9.
Fallah-Ziarani M, Haddad R, Garoosi Gh, Jalali M (2013) Agrobacterium-mediated transformation of cotyledonary leaf of lettuce (Lactuca sativa L.) by the GCHI gene. Iranian J Gen Plant Breed 2, 47-55.
Gómez-Montes EO, Oliver-Salvador C, Durán-Figueroa N et al. (2015) Optimization of direct shoot regeneration using cotyledonary explants and true leaves from lettuce cv. Romaine (Lactuca sativa L.) by surface response methodology. Plant Growth Regul 77, 327-334.
Honari H, Alizade H, Shah Nejat Booshehri AA et al. (2009) In vitro regeneration of Iranian varieties of lettuce (Lactuca sativa. L) cultivars. Iranian J Field Crop Sci 39, 173-180 (In Persian).
Honari H, Alizade H, Shah Nejat Booshehri AA et al. (2013) Factors affecting agrobacterium-mediated transformation of uida gene into lettuce (Lactuca sativa L.). Iranian J Hort Sci 43, 91-101 (In Persian).
Ismail H, Dilshad E, Waheed MT, Mirza B (2017) Transformation of lettuce with rol ABC genes: Extracts show enhanced antioxidant, analgesic, anti-inflammatory, antidepressant, and anticoagulant activities in rats. Appl Biochem and Biotechnol 181, 1179-1198.
Ismail H, Mirza B (2015) Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Comp and Altern Med 15, 199-205.
Latif B, Jalali Javaran M, Alizadeh H et al. (2014) Interactions of genotype and plant growth regulators affecting direct shoot regeneration of lettuce (Lactuca sativa L.). Int J Biosci 5, 315-322.
Ma L, Wang Y, Liu W, Liu Zh (2014) Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate aaccumulation. Biotechnol Lett 36, 2331-2341.
Mohebodini M, Jalali Javaran M, Alizadeh H et al. (2011a) Optimization of tissue culture and gene transfer in lettuce (Lactuca sativa L.). J Hort Sci 24, 195-202 (In Persian).
Mohebodini M, Jalali Javaran M, Mahboudi F, Alizadeh H (2011b) Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of Lettuce (Lactuca sativa L.). Aust J Crop Sci 5, 92-95.
Mohebodini M, Jalali-Javaran M, Alizadeh H et al. (2014) Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) to express IgG-binding protein A and human pro-insulin as a fusion protein. J Hort Sci Biotechnol 89, 719-725.
Najjar-Khodabakhsh A, Chaparzadeh N (2015) The role of ascorbic acid in reduction of oxidative effects of salinity on Lepidium sativum L. J Plant Res 28, 175-185 (In Persian).
Song D, Xiong X, Tu WF et al. (2017) Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa). Gen Mol Res 16, 1-9.
Wang WP, Guo XB, Tang KX (2011) Transformation of GDP-mannose pyrophosphorylase gene from Arabidopsis thaliana L. into Lactuca sativa L. J Shanghai Jiaotong Uni 29, 43-49.
Zakari SM, Zebarjadi A (2017) Isolation and characterization of GDP-D-mannose 3, 5-epimerase (GME) gene impressive in vitamin C biosynthesis pathway. J of Appl Biotechnol Reps 4, 687-693.
Zhang Ch, Liu J, Zhang Y et al. (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reps 30, 389-398.
Zhou Y, Tao QC, Wang ZN et al. (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biolog Planta 56, 451-457.