مطالعه تغییرات بیان Pdu-miR319a، Pdu-miR398a و ژن‌های هدف آن‌ها در اندام‌های زایشی بادام تحت تنش سرما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 شهرکرد- دانشگاه شهرکرد-دانشکده کشاورزی -گروه اصلاح نباتات و بیوتکنولوژی

2 شهرکرد-دانشگاه شهرکرد- دانشکده کشاورزی- گروه اصلاح نباتات و بیوتکنولوژی

3 استادیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهرکرد

4 گروه زیست شناسی، دانشکد ه علوم، دانشگاه رازی کرمانشاه

چکیده

درخت بادام به دلیل نیاز سرمایی کم، به سرمای دیررس بهاره حساس بوده و همه ساله متحمل خسارات جبران‌ناپذیری توسط این تنش می‌شود. لازمه توسعه ارقام متحمل با استفاده از روش‌های مهندسی ژنتیک، شناخت مکانیسم‌های مولکولی دخیل در پاسخ‌گیاه به تنش سرما می‌باشد. در مطالعات اخیر نقش مهم RNAهای کوچک به ویژه میکروRNAها در پاسخ و سازگاری گیاهان به تنش‌های زیستی و غیر‌زیستی اثبات شده است. از این‌رو بر اساس نتایج توالی‌یابی sRNAهای بادام از میان میکروRNAهای پاسخ دهنده به تنش سرما، در این مطالعه Pdu-miR319a و Pdu-miR398a-3p انتخاب و الگوی بیان آن‌ها به همراه ژن هدفشان در بین دو ژنوتیپ متحمل و حساس به سرمای بادام تحت تنش سرما مورد مقایسه قرار گرفتند.
مواد و روش‌ها: در این آزمایش بافت‌های زایشی بساک و تخمدان ژنوتیپ متحمل H و رقم حساس به سرمای Sh12 تحت تیمارهای صفر و 2- درجه سانتی‌گراد قرار گرفتند. پس از استخراج RNA و سنتز cDNA، واکنش Real time PCR انجام و تجزیه و تحلیل داده‌های بیان نیز با استفاده از روش ΔΔct 2- صورت گرفت.
نتایج: ژن miR319a با اثر تنظیمی مثبت در پاسخ به هر دو سطح تنش سرما در هر دو ژنوتیپ شناسایی گردید. کاهش بیان GAMYB-like در هر دو بافت زایشی ژنوتیپ H در پاسخ به تنش صفر درجه سانتی‌گراد و نیز در بافت تخمدان Sh12 در پاسخ به هر دو سطح تنش مشاهده شد. ژن TCP4 در ژنوتیپ H در پاسخ به هر دو سطح تنش افزایش معنی‌داری را نشان داد. MiR398a-3p با اثر تنظیمی منفی در ژنوتیپ H شناسایی شد. اما افزایش بیان ژن CTR6 در هر دو بافت در پاسخ به تنش 2- درجه سانتی‌گراد مشاهده گردید. در رقم Sh12 افزایش بیان miR398a-3p و کاهش بیانCTR6 در بافت تخمدان Sh12 در پاسخ به تنش 2- درجه سانتی‌گراد مشاهده شد.
نتیجه‌گیری: با توجه به مشاهده افتراق بیان ژن‌های مورد مطالعه در بین دو ژنوتیپ متحمل و حساس، به منظور تکمیل اطلاعات مولکولی در رابطه با عملکرد آن‌ها، توصیه می‌شود بیان آن‌ها در سایر ارقام متحمل و حساس و تحت تیمار‌های مختلف تنش سرمایی نیز سنجیده شود و به دنبال آن عملکرد آن‌ها با استفاده از روش‌هایی نظیر بیش بیان کردن ژن‌ها، تکنولوژی amiRNA و روش target mimicry بررسی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Study the Expression Changes of Pdu-miR319a, Pdu-miR398a-3p and Their Target Genes in Reproductive Tissues of Almond under Cold Stress

نویسندگان [English]

  • Marzieh Karimi 1
  • Behrouz Shiran 2
  • Mohammad Rabiei 3
  • Hossein Fallahi 4
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University
2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University
3 shahrekord university
4 Department of Biology, Razi University, Kermanshah
چکیده [English]

Objective
Due to the low chilling requirement of almond, this plant encounters yearly with irreparable damages by late spring frost. The introduction of tolerant cultivars using genetic engineering methods, depends on the identification of molecular mechanisms involved in cold stress response. In recent studies the important role of small RNAs especially miRNAs have been confirmed in the response and adaptation of plants to biotic and abiotic stresses. Therefore, based on the sRNA sequencing results of almond, among identified cold-responsive miRNAs, in this study, the expression pattern of Pdu-miR319a and Pdu-miR398a-3p < /em> along with their targets were compared between two cold tolerant and sensitive genotypes of almond.
 
 
 
Materials and methods
The reproductive tissues of almond (anther and ovary) from H as tolerant genotype and Sh12 as sensitive variety were treated under 0 and -2 ᵒC. After RNA extraction and cDNA synthesis Real Time PCR was performed and expression data were analyzed by 2- ΔΔct method.
Results
MiR319a was identified with a positive regulatory effect in response to both cold stress levels in two genotypes. The downregulation of GAMYB-like was observed in both tissues of H under 0ᵒC and also in the ovary of Sh12 under 0 and -2 ᵒC. The expression of TCP4 was significantly increased in H under both stress levels. MiR398a-3p was detected with a negative regulatory effect in the H but the induction of CTR6 was observed in both tissues under -2ᵒC. In Sh12 the upregulation of miR398a-3p and the downregulation of CTR6 was observed.
Conclusions
Regarding to the differential expression of studied genes between two genotypes, in order to complete the molecular information about their function, it is recommended to examine their expression among other tolerant and sensitive varieties under different cold stress treatments, and followed by their function should be assessed using methods such as over expression, amiRNA technology and target mimicry.

کلیدواژه‌ها [English]

  • Almond
  • Cold stress
  • Reproductive tissue
  • Expression pattern
  • MiRNA
احسنی محمدرضا؛ محمدآبادی محمدرضا؛ اسدی فوزی و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
ایمانی علی (1379). اصلاح بادام (ترجمه). نشر آموزش کشاورزی. 128 صفحه.
توحیدی نژاد فاطمه؛ محمدآبادی محمدرضا؛ اسمعیلی زاده کشکوئیه علی؛ نجمی نوری عذرا (1393) مقایسه سطوح مختلف بیان ژنRheb  در بافت‌های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، 50-35.
جعفری دره در امیر حسین؛ محمدآبادی محمدرضا؛ اسمعیلی زاده کشکوئیه علی؛ ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time qPCR. مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
سرخه کریم (1390) بررسی فیزیو‌بیو‌شیمیایی و مولکولی گونه‌‌های وحشی و ژنوتیپ‌های اهلی بادام ایران. پایان‌نامه دکتری اصلاح نباتات. دانشکده کشاورزی. دانشگاه شهرکرد. ایران.
محمدآبادی محمدرضا؛ کرد محبوبه؛ نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 122-111.
موسوی صادق؛ شیران بهروز؛ ایمانی علی؛ هوشمند سعداله؛ ابراهیمی اسماعیل (1393). بررسی برخی شاخص‌های فیزیولوژیکی مرتبط با سرما‌زدگی در ارقام بادام با زمان گل‌دهی متفاوت. مجله تولید و فرآوری محصولات زراعی و باغی 12: 235-246.
References
Abla M, Sun H, Li Z  et al. (2019) Identification of miRNAs and their response to cold stress in Astragalus membranaceus. Biomolecule 9, 182.
Achard P, Gong F, Cheminant S et al. (2008) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117-2129.
Afshari H, Parvane T( 2013) Study the effect of cold treatments on some physiological parameters of 3 cold resistance Almond cultivars. Life Sci 10, 4-16.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019a) Effect of Roasted Soybean and Canola Seeds on Peroxisome Proliferator‐Activated Receptors Gamma (PPARG) Gene Expression and Cattle Milk Characteristics. Iran J Appl Anim Sci 9, 635-642.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019b) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Alisoltani A, Shiran B, Fallahi H, Ebrahimie E ( 2015) Gene regulatory network in almond (Prunus dulcis Mill.) in response to frost stress. Tree Genet Genomes 11, 100.
Bellemare DR, Shaner L, Morano  et al. (2002) Ctr6, a Vacuolar Membrane Copper Transporter in Schizosaccharomyces pombe. J Biol Chem 277, 46676-46686.
Chen C, Ridzon DA, Broomer AJ  et al. (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acid Res 33, e179.
Chen Y, Jiang J, Song A et al. (2013) Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol 11, 121.
Dai X, Zhao, PX (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acid Res 39, W155-W159
Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7,1930.
Dhanapal AP, Crisosto CH (2013) Association genetics of chilling injury susceptibility in peach (Prunus persica L. Batsch) across multiple years. Biotechnol J 3, 481-490.
Gao X, Wan F, Mateo K et al. (2009) Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function. PLoS Pathog 5, e1000708.
Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. The Plant Cell 7, 1879-1891.
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-53.
Imani A, Mahamadkhani Y (2011) Characteristics of almond selections in relation to late frost spring. IJNRS 2, 31–34.
Imani A, Ezaddost M, Asgari F, Masoumi S, Raeisi I (2012). Evaluation the resistance of almond to frost in controlled and field conditions. IJNRS 3, 29–36.
Jafari Darehdor AH, Mohammadabadi MR, Esmailizadeh AK, Riahi Madvar A (2016) Investigating expression of CIB4 gene in different tissues of Kermani Sheep using Real Time qPCR. J Rumin Res 4, 119-132 (In Persian).
Jia X, Wang WX, Ren L et al. (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol Rep 71, 51-59.
Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799.
Karimi M, Ghazanfari F, Fadaei A et al. (2016) The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress. PLoS ONE 11, e0156519.
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14, 836–843.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time PCR and the 2(- Delta Delta C(T)) Method. Method 25, 402-408.
Lv DK, Bai X, Li Y et al. (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459, 39-47.
Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14, 1035-1046.
Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. The Plant Cell 17, 705-721.
Millar AA, Lohe A, Wong G (2019) Biology and Function of miR159 in Plants. Plants 8, 255.
Mohammadabadi MR, Tohidinejad F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Mohammadabadi MR, Jafari AHD, Bordbar F (2017) Molecular analysis of CIB4 gene and protein in Kermani sheep. Brazil J Med Biol Res 50, e6177.
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (In Persian).
Mousavi S, Alisoltani A, Shiran B, et al. (2014) De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PloS ONE 9, e104541.
Mukhopadhyay P, Tyagi AK (2015) OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 5, 9998.
Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134, 1718-1732.
Rhoades MW, Reinhart BJ, Lim LP et al. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.
Rubio-Piña JA, Zapata-Pérez O (2011) Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. Electron J Biotechnol 14, 11-18.
Schwab R, Ossowski S, Riester M et al. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell 18, 1121-1133.
Sinha S, Kukreja B, Arora P et al. (2015) The omics of cold stress responses in plants. In: Functional Genomics Perspectives. Elucidation of Abiotic Stress Signaling in Plants. Pandey GK (ed). Springer New York. pp. 143-194.
Sunkar R, Zhu JK ( 2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16, 2001–2019.
Thiebaut F, Rojas CA, Almeida KL, et al ( 2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35, 502–512.
Tohidi nezhad F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 35-50.
Varkonyi-Gasic E, Wu R, Wood M et al (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Method 3, 12.
Wang B, Duan CG, Wang X et al. (2015). HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis. Plant J 81, 861-870.
Wang T, Pan H, Wang J, Yang W, Cheng T, Zhang Q (2014) Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol. Genet. Genom 289, 169-183.
Yamasaki H Abdel-Ghany SE, Cohu CM (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282, 16369-16378.
Yang Y, Zhang X, Su Y, (2017) miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomic 18, 833.
Yang C, Li D, Mao D, Liu (2013) Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36, 2207-2218.
Yu X, Wang H, Lu Y et al. (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63, 1025-1038.
Zeng X, Xu Y, Jiang J et al. (2018) Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol 18, 52.
Zhang B, Pan X, Cobb GP (2006) Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289, 3-16.
Zhou B, Kang Y, Leng J, Xu Q (2019) Genome-Wide Analysis of the miRNA–mRNAs Network Involved in Cold Tolerance in Populus simonii× P. nigra. Gene 10, 430
Zhou X, Wang G, Sutoh K,  et al. (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochem Biophys Acta Gene Regul Mech 1779, 780-788.
Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143, 1-9.