شناسائی، ارزیابی بیوانفورماتیکی و بررسی بیان ژن DREB2 در گندم محلی کلک افغانی تحت شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه زابل. پژوهشکده زیست فناوری کشاورزی. زابل. ایران

2 دانشکده کشاورزی. گروه زراعت. دانشگاه زابل. زابل . ایران

3 استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

4 گروه اصلاح نباتات و بیوتکنولوژی دانشکده کشاورزی دانشگاه زابل

5 گروه زیست شناسی دانشکده علوم دانشگاه یزد

10.22103/jab.2021.16853.1279

چکیده

هدف: خانواده ژنی DREB، از فاکتورهای رونویسی موثر در تحمل گیاهان به تنش­های محیطی از جمله تنش شوری هستند. پژوهش حاضر با هدف شناسائی و  ارزیابی بیان ژن DREB2  در غلظت­های مختلف شوری در گندم محلی کلک افغانی صورت گرفت.
مواد و روش­ها: تیمار تنش شوری با بکارگیری نمک NaCl به گندم اعمال شد. تیمارهای آزمایشی شامل سطوح مختلف شوری (صفر، 100، 150، 200، 250 و300 میلی­مولار) بود.  سپس استخراج RNA و سنتز cDNA انجام شد و تکثیر قطعه اختصاصی ژن DREB2 با پرایمرهای اختصاصی صورت گرفت. در ادامه ترانسکریپت بدست آمده، برای توالی­یابی ارسال شد و به منظور شناسائی ژن DREB2، توالی مورد تحلیل قرار گرفت.        
نتایج: توالی جزئی ژن DREB2 گندم محلی کلک افغانی در پایگاه NCBI  با شماره دستیابی KR106189 ثبت گردید. نتایج حاصل از همردیفی، نشان داد که توالی بدست آمده، بیش از 95 درصد با توالی این ژن در گیاهان Triticum dicoccoides و Agropyrum elongatumمشابهت دارد. بررسی ساختار دوم توالی پروتئینی DREB2 از طریق برنامه­های PSIpred و SOPMA نشان داد که این توالی دارای 46 مارپیچ آلفا (86/32 %)، 11 پیچ بتا (86/7 %)، 9 رشته بلند (43/6 %) و 74 مارپیچ تصادفی (86/52 %) می­باشد. نتایج ارزیابی بیان ژن DREB2  نشان داد که غلظت mM 100 تنش شوری، تاثیر بسزایی در افزایش بیان ژن دارد. به طورکلی بیشترین تاثیر در بیان ژن DREB2 را غلظت mM 100 تنش شوری داشت و کمترین مقدار مربوط به غلظت mM 300 تنش شوری بود.
نتیجه­گیری: بطور کلی، ژن DREB2  در مقایسه با سایر ژن­های القاشونده توسط تنش، تحمل گیاه را افزایش می­دهد و همین امر موجب شده این ژنها جهت مهندسی ژنتیک و بهبود عملکرد محصولات، هدف مطلوب و مناسبی باشند. به نظر می رسد دلیل اینکه میزان بیان ژن DREB2 در غلظت­های بالا افزایش نمی یابد، بارگیری نمک بیشتر از توان سلول ها برای انتقال آن باشد. در این شرایط نمک به سیتوپلاسم منتقل می­شوند و مانع از فعالیت­های آنزیمی می­گردد. همچنین پیامد رایج ناشی از تجمع غلظت­های بالای نمک، تجمع مقادیر زیادی از اکسیژن فعال آزاد (ROS) باشد که می­تواند سبب اکسیداسیون پروتئین ها، آسیب به DNA سلولی، پراکسیداسیون لیپیدها و ایجاد اثر متقابل با دیگر اجزای حیاتی سلول گردد که منجر به سمیت سلول می­گردد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Identification, bioinformatics evaluation and gene expression of DREB2 in local wheat of Kalak Afghani under salinity stress

نویسندگان [English]

  • Davoud Naderi 1
  • Mahboobeh Basiri 2
  • mohsen musavi 3
  • Baratali Fakheri 4
  • Seyed-Kazem Sabbagh 5
1 University of zabol. zabol. iran
2 Department of Agronomy and Plant Breeding, University of Zabol.Zabol. Iran
3 Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zabol. Zabol, Iran.
4 Department of Plant Breeding and Biotechnology, College of Agriculture, Zabol University
5 Dept. of Biology, Faculty of Science, Yazd University, Yazd, Iran
چکیده [English]

 
Objective
DREB gene family is one of the effective transcription factors in plant tolerance to environmental stresses, including salinity stress. The aim of this study is to identify and evaluate the expression of DREB2 gene in different salinity concentrations in local wheat of Kalak Afghan.
Materials and methods
Salinity stress treatment was applied to wheat using NaCl salt. Experimental treatments included different salinity levels (0, 100, 150, 200, 250 and 300 mM). Then RNA extraction and cDNA synthesis were performed and the specific fragment of DREB2 gene was amplified with specific primers. The obtained transcript was then sent for sequencing and the sequence was analyzed to identify the DREB2 gene.
Results
Partial sequence of DREB2 gene of local wheat of Kalak Afghani was registered in NCBI database with access number KR106189. The results of sequencing showed that the obtained sequence is more than 95% similar to the sequence of this gene in Triticum dicoccoides and Agropyrum elongatum. Examination of the second structure of DREB2 protein sequence through PSIpred and SOPMA programs showed that this sequence has 46 alpha helices (32.86%), 11 beta helices (7.86%), 9 long strands (6.43%) and 74 is a random helix (52.86%). The results of evaluation of DREB2 gene expression showed that the concentration of 100 mM salinity treatment, has a significant effect on increasing gene expression. In general, the highest effect on DREB2 gene expression was 100 mM salinity treatment and the lowest value was 300 mM. Conclusions
In general, the DREB2 gene increases plant tolerance compared to other stress-induced genes, which makes them a desirable target for genetic engineering and crop performance. It seems that the reason that the expression of DREB2 gene does not increase at high concentrations is that the salt load is greater than the cells' ability to transmit it. Under these conditions, salt is transferred to the cytoplasm and inhibits enzymatic activities. Also, a common consequence of the accumulation of high concentrations of salt is the accumulation of large amounts of Reactive oxygen species (ROS), which can cause protein oxidation, damage to cellular DNA, lipid peroxidation, and interaction with other vital cell components. Leads to cell toxicity.

کلیدواژه‌ها [English]

  • bioinformatics
  • Partial CDS
  • Abiotic stresses
  • Transcription factors
  • Motif
  • qPCR
احسنی محمدرضا، محمدآبادی محمدرضا ، اسدی فوزی مسعود و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
بصیری محبوبه، موسوی نیک سید محسن، صباغ سید کاظم، و همکاران (1398) شناسائی ژن عامل رونویسی متصل شونده به عناصر پاسخ دهنده به کم‌آبی (DREB2) در علف هرز بروموس‌ ژاپنی (Bromus japonicus)  تحت شرایط تنش شوری. پژوهش علف های هرز . 11(1)،50 – 35.   
توحیدی نژاد فاطمه، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، نجمی نوری عذرا (1393). مقایسه سطوح مختلف بیان ژنRheb  در بافت های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، 50-35.
جعفری دره در امیر حسین، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت­های مختلف گوسفند کرمانی با استفاده از Real Time qPCR. مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
راوری سید ذبیح الله. دهقانی حمید، نقوی هرمزد (1395) ارزیابی تحمل به شوری ارقام گندم نان بر اساس شاخص‌های تحمل مبتنی بر نسبت پتاسیم به سدیم برگ پرچم. فصلنامه تحقیقات غلات 6(2).  144-133.
محمدآبادی محمدرضا (1399) پروفایل بیانی mRNA مختص بافت ژن ESR2 در بز. مجله بیوتکنولوژی کشاورزی 12(4)، 181-167.
محمدآبادی محمدرضا، سفلایی محمد (1399). پروفایل بیانی mRNA مختص بافت ژن BMP15 در بز. مجله بیوتکنولوژی کشاورزی 12(3)، 208-191.
References
Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25, 1263-1274.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M, et al. (2019) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci J 166, 3-16.
Chaitanya K, Jutur P, Sundar D, Ramachandra RA (2003) Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Reg 40, 75-80.
Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Function Plant Biol 30, 239-264.
Cui M, Zhang W, Zhang Q, et al. (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49, 1384-1391.
Farhoudi R (2014) Investigation the salinity tension effect on growth and physiological characteristics of nine wheat cultivars at vegetative growth stage. Crop Physiol J 5, 71-86 (In Persian).
Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675- 1690.
Glover JN, Williams RS, Lee M (2004) Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem Sci 29, 579-85.
Huang B, Yi B, Duan Y, et al. (2008) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35(4), 601-12.
Jafari Darehdor AH, Mohammadabadi MR, Esmailizadeh AK, Riahi Madvar A (2016) Investigating expression of CIB4 gene in different tissues of Kermani Sheep using Real Time qPCR. J Rumin Res 4, 119-132 (In Persian).
Kasuga M, Liu Q, Miura S (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech Mar 17(3), 287-91.
Kim YJ, Shim JS, Krishna PR, et al. (2008) Isolation and characterization of a glutaredoxin gene from Panax ginseng C. A. Meyer. Plant Mol Biol Rep 26, 335–349.
Kovalchuk N, Jia W, Eini O, et al. (2013) Optimization of TaDREB3 gene expression in transgenic barley using cold‐inducible promoters. Plant Biotech J 11, 659-670.
Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62, 4731-4748.
Li H, Zhao Q, Sun X, et al. (2017) Bioinformatic identification and expression analysis of the Malus domestica DREB2 transcription factors in different tissues and abiotic stress. J Plant Biochem Biotechnol 26, 436–443.
Li X, Zhang D, Li H, et al (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 2, 14. 44.
Liu Q, Kasuga M, Sakuma Y, et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and lowtemperature- responsive gene expression, respectively in Arabidopsis. Plant Cell 10, 1391–1406.
Masoudzadeh SH, Mohammadabadi MR, Khezri A, et al. (2020) Dlk1 Gene Expression in Different Tissues of Lamb. Iran J Appl Anim Sci 10, 669-677.
Mohammadabadi M (2021) Tissue-specific mRNA expression profile of ESR2 gene in goat. Agric Biotechnol J 12 (4), 167-181 (In Persian)
Mohammadabadi M, Soflaei M (2020) Tissue-specific mRNA expression profile of BMP15 gene in goat. Agric Biotechnol J 12, 191-208 (In Persian).
Mohsenzadeh S, Karimi-Andani K, Mohabatkar H (2011) Study of dehydration-responsive element binding-factor gene in some Iranian bread wheat cultivars. J Plant Biol 3, 69-76.
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25, 239-250.
Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140, 411–432.
Pfaffl MW, (2001) A new mathematical model for relative quantification in real-time RT– PCR. Nucleic Acids Res 29, 2002–2007.
Ravari SZ, Dehghani H, Naghavi H (2016) Assessing salinity tolerance of bread wheat varieties using tolerance indices based on K+/NA+ ratio of flag leaf. Cereal Res J 6(2), 133 – 144 (In Persian).
Rodrigues FA, de Laia ML, Zingaretti SM, (2009) Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci 176(2), 286-302.
Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165, 1147-1168.
Sakuma Y, Liu Q, Dubouzet J, et al. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290, 998-1009.
Seki M, Narusaka M, Abe H, et al, (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.
Shen YG, Zhang W K, Yan DQ, et al. (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107, 155-161.
Soong R, Ruschoff J, Tabiti K, (2000) Detection of colorectal micrometastasis by quantitative RT–PCR of ytokeratin 20 mRNA. Roche Molecular Biochemicals Internal Publication.
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., and McDonald, G.K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany 62, 2189-2203.
Tohidi nezhad F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 35-50 (In Persian).
Wang XM, Dong J, Liu Y, Gao HW (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28, 664–675.
Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53, 570–585.
Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238, 17–25.