تنوع ژنتیکی فامیل‌های تلاقی برگشتی حاصل از تلاقی جو زراعی و وحشی با نشانگرهای مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 اصفهان اصفهان - دانشگاه صنعتی اصفهان

3 استاد گروه ژنتیک و به‌نژادی گیاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

4 دانشجوی دکترا گروه ژنتیک و به‌نژادی گیاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

هدف: تنوع ژنتیکی در گیاهان در طی مدت طولانی اهلی شدن جو زراعی، بویژه پس از استفاده از روش‌های اصلاحی مدرن و کشت فشرده، به میزان قابل توجهی کاهش یافته و معضل فرسایش ژنتیکی در این گیاه مطرح می‌باشد. خویشاوندان وحشی جو زراعی دارای مواد ژنتیکی با ارزش برای اصلاح جو هستند. تنوع ژنتیکی گونه‌های وحشی متعلق به خزانه ژنی اولیه جو در بکارگیری برنامه‌های اصلاحی جو به خصوص برای تحمل در برابر تنش‌های زنده و غیر زنده حائز اهمیت بسیاری است. با توجه به قرابت گونه وحشی (spontaneum L. Hordeum.) با گونه زراعی و عدم اقبال در یافتن ژن‌های مقاومت در گونه زراعی، اینترگرسیون ژنی راه حلی مناسب برای انتقال ژن‌های مطلوب است. مواد و روش‌ها: در این پژوهش تنوع ژنتیکی جمعیت تلاقی برگشتی حاصل از تلاقی بین‌گونه‌ای جو زراعی و وحشی با استفاده از نشانگرهای مولکولی که در تسریع انتخاب برای سهم بیشتر والد دوره‌ای در روند تلاقی برگشتی مفید است، با استفاده از نشانگرهای ریزماهواره ارزیابی شده است. نتایج: برای بررسی تنوع ژنتیکی و تجزیه واریانس مولکولی (AMOVA) در بین 142 فامیل حاصل از تلاقی برگشتی، به ترتیب از دو نرم‌افزار POPGENE و ARlIQUIN استفاده شد. میانگین شاخص‌های Gst و Nm که نشان‌دهنده میزان تفرق ژنی و جریان ژنی بین گروه‌ها است به ترتیب معادل 59/0 و 34/0 بود، که بیانگر یک تبادل ژنی پایین بین 9 گروه حاصل از تلاقی برگشتی بوده است. تجزیه واریانس مولکولی گروه‌ها نشان داد که عمدة تنوع ژنتیکی 5/86 شناسایی شده مربوط به درون گروه‌ها بوده است. داده‌های حاصل از تشابه ژنتیکی نی در دامنه‌ای از 92/0-41/0 قرار گرفتند، که با نتایج فاصله ژنتیکی تطابق داشت. تجزیه ساختار جمعیت با استفاده از نرم‌افزار STRUCTRE جمعیت را به پنج گروه با تعداد 40، 22، 27، 20 و 35 فامیل برای هر گروه تقسیم کرد. نتیجه‌گیری: نتی نشانگرهای SSR جهت افزایش کارایی برنامه‌های انتقال ژن از گونه‌های خویشاوند جو به‌منظور اصلاح جو به-ویژه برای تحمل تنش‌های زنده و غیرزنده دارای پتانسیل ارزشمندی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic diversity of backcross families derived from crossing between cultivated and wild barley using molecular markers

نویسندگان [English]

  • farzane karamzade 1
  • Ahmad Arzani 2
  • Seyed Ali Mohammad Mirmohammady-Maibody 3
  • Fateme Ebrahim 4
1 isfahan university of technology
2 Professor, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
3 Professor, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
4 Phd Student, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Objective Plant genetic variation, during the long-term domestication of the cultivated barley, especially after the modern breeding and intensive cultivation, reduced significantly, leading to genetic erosion in this crop as well. Wild relatives of cultivated barley are potential source of valuable genetic materials for barley improvement. Genetic variation of wild species belonging to primary gene pool of barley is important in employing in barley breeding program, particularly for tolerance to biotic and abiotic stresses. Being a close relative of wild species (H. spontaneum L.) and the lack of tolerance genes among the cultivated genotypes of barley makes gene introgression the appropriate avenue to transfer desired genes such as abiotic stress tolerance. Materials and methods In this research a backcross populations (BC2F1) developed from interspecific hybridization between cultivated barley and its wild relative (H. spontaneum L.) was assessed for genetic diversity using molecular markers which are valuable to assist background selection for recurrent parent. Results Arliquin and POPGENE softwares were used to analyze genetic diversity and molecular variance (AMOVA) among populations, respectively. Gst and Nm parameters had an average of 0.59 and 0.34, respectively, indicating a low gene flow among nine groups of backcross families. The AMOVA results showed that majority of genetic diversity belonged to within population variation (86.48%). Nei's genetic similarity ranged from 0.41 to 0.92 which were consistent with those of genetic distance Conclusions Microsatellite markers have strong differentiation ability to discriminate the resultant genotypes from a bi-parental cross.

کلیدواژه‌ها [English]

  • : Genetic variation
  • Backcross population
  • Molecular marker
  • structure
علینقی‌زاده روح‌الله، محمدآبادی محمدرضا، زکی‌زاده سونیا (1389) چند شکلی اگزون 2 ژن BMP15 در بز قرمز جبال بارز. مجله بیوتکنولوژی کشاورزی 2(1)،80-69.
واجدابراهیمی محمدتقی، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی (1394) بررسی تنوع ژنتیکی پنج جمعیت گوسفند ایرانی با استفاده از نشانگرهای ریزماهواره‌ای. مجله بیوتکنولوژی کشاورزی 7(4)، 158-143.
واجدابراهیمی محمدتقی، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی (1396) بررسی تنوع ژنتیکی چهار نژاد از گوسفندان موجود در ایران با استفاده از نشانگرهای ریزماهوارهای. فناوری زیستی در کشاورزی 16(1)، 67-59.
محمدی فر آمنه، محمدآبادی محمدرضا (1390) کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی. فصلنامه علوم دامی ایران  42(4)، 344-337.
References
Abbasov M, Sansaloni CP, Burgueño J et al. (2019) Genetic diversity analysis using DArTseq and SNP markers in populations of Aegilops species from Azerbaijan. Genet Resour Crop Evol 67, 281-291.
Ali M, Hussain M, Abdullah S et al. (2020). Integrated scoring of salinity stress on agro-morphometric and seed storage proteins in barley landraces. Pure Appl Biol (PAB) 9, 963-978.
Alinaghizadeh R, Mohammadabadi MR, Zakizadeh S (2010) Exon 2 of BMP15 gene polymorphismin Jabal Barez Red Goat. Agric Biotechnol J 2, 69-80 (In Persian).
Aiello D, Ferradini N, Torelli L et al. (2020) Evaluation of Cross-Species Transferability of SSR Markers in Foeniculum vulgare. Plants 9(2), p.175.
Allel D, Ben-Amar A, Lamine M, Abdelly C (2017) Relationships and genetic structure of North African barley (Hordeum vulgare L.) germplasm revealed by morphological and molecular markers: Biogeographical considerations. South Afr J Bot 112, 1-10.
Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants‏. Crit Rev Plant Sci 35, 146-189.
Bossdorf O, Auge H, Rogers WE et al. (2005) Phytotypic and genetic differentiation between native and introduce plant populations. Oecologia 144, 1-11.
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14, 2611-2620.
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10, 564-567.
Ferreira JR, Pereira JF, Turchetto C et al. (2016) Assessment genetic diversity in Brazilian barley using SSR markers. Genet Mole Biol 39, 86-96. 
Gordon E, Kaviani M, Kagale S et al. (2019) Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. Genet. Resour Crop Evol 66, 335-348.   
Grant V (1991) The Evolutionary Process: A critical Study of Evolutionary Theory. Columbia University Press, NewYork.
Guo Y, Li Y, Huang Y et al. )2012( Genetic diversity analysis of hulless barley from Shangri-la region revealed by SSR and AFLP markers. Genet Resour Crop Evol 59, 1543–1552.
 Hajmansoor S, Bihamta MR Alisoltani A (2013) Genetic diversity among and within Iranian and non-Iranian barely (Hordeum vulgare L.) genotypes using SSR and storage proteins markers. Biochem Syst Ecol 46, 7-17. 
Jo WS, Kim HY, Kim KM (2017) Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare). 3 Biotech 7, 265-277.
Kashyap PL, Kumar S, Kumar RS et al. (2020) Identification of Novel Microsatellite Markers to Assess the Population Structure and Genetic Differentiation of Ustilago hordei Causing Covered Smut of Barley. Front Microbiol 19, 1-10.
 Kumar A, Mishra P, Singh SC, Sundaresan V (2013) Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst Evol 300, 1409-1420.
Liao L, Guo QS, Wang Z et al. (2012) Genetic diversity analysis of Prunella vulgaris in China using ISSR and SRAP markers. Biochem Syst Ecol 45, 209-217. 
Li FQ, Peng JH (2014) Genetic and association mapping study of English grain aphid resistance and tolerance in bread wheat germplasm. J Int Agric 13, 40-53.
 Low A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and Application. Black-Well Publishing. Oxford. 
 Maniruzzaman M, Talukder ZA, Rohman S et al. (2014) Polymorphism study in barley (Hordeum vulgare) genotypes using microsatellite (SSR) markers. Bangladesh. J Agric Res 39, 33-45.
 Milner SG, Jost M, Taketa S et al. (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51, 319-326.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42, 337-344 (In Persian).
Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci 43, 1235-1248. 
 Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet 89, 583-590.
 Nunay IMY, Chikmawati T, Miftahudin M (2019) Morphological diversity of local sorghum cultivar (Sorghum bicolor) of East Nusa Tenggara, Indonesia. Biosaintifika: J Biol Biol Educ 11, 47-54.
 Ozkan H, Kafkas S, Ozer MS, Brandolini A (2005) Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theor Appl Genet 112, 12-20.
 Liu M, Li Y, Ma Y et al. (2020) The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol J 18, 443-456.
Petkovski N, Mihajlov L, Ruzdik NM (2018) Genetic and environmental effect on the grain yield of spring barley varieties cultivated in the Republic of Macedonia. J Agric Plant Sci 16, 97-102.
Pritchard J K, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155, 945-959.
Rufo R, Alvaro F, Royo C, Soriano J M (2019) From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PloS One 14, 1-19.  
 Schaal BA, Hayworth DA, Olsen KM et al. (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7, 465-474. 
Shahmoradi SM, Chaichi J, Mozafari D et al. (2013) Evaluation of genetic diversity and geographical in Hordeum spontaneum ecotypes of Iran. Iran J Crop Sci 44, 209-225 (In Persian).
Shakhatreh Y, Baum M, Haddad N et al. (2016) Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers. Genet Resour Crop Evol 63, 813-822.
 Sharma HC, Crouch JH, Sharma KK et al. (2002) Application of biotechnology for crop improvement: prospects and constraints. Plant Sci 163, 381-395. 
 Singh YT (2019) Genetic Diversity and Population Structure in Upland Rice (Oryza sativa L.) of    Mizoram, North East India as Revealed by Morphological, Biochemical and Molecular Markers. Biochem Genet 57, 421-442.
 Slatkin M (1987) Gene flow and the geographic structure of populations. Science 236, 787-792. 
Smith JSC, Chin ECL, Shu H, et al. (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95, 163-173.
 Spataro G, Tiranti B, Arcaleni P, Bellucci E (2011) Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122, 1281-1291.   
Vajed Ebrahimi MT, Mohammadabadi MR, Esmailizadeh AK (2017a) Genetic Diversity Analysis of Four Sheep Breeds Existing in Iran Using Microsatellite Markers. Agric Biotechnol 8, 59-66 (In Persian).
Vajed Ebrahimi MT, Mohammadabadi MR, Esmailizadeh AK (2017b). Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Archive Anim Breed 60, 183-189.
Vajed Ebrahimi MT, Mohammad Abadi MR, Esmailizadeh AK (2016) Analysis of genetic diversity in five Iranian sheep population using microsatellites markers. Agric Biotechnol J 7, 143-158 (In Persian).    
Vanhala TK, Van Rijn CPE, Buntjer J (2004) Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel. Euphytica 137, 297-309.
Varshney RK, Baum M, Guo P et al. (2010) Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection. Mol Breed 26, 229–242.
Von Kor M, Wang H, Leon J, Pillen K (2006) AB-QTL analysisin spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (Hordeum vulgare L. ssp. spontaneum). Theor Appl Genet 112, 1221-1231.
 Volk G, Byrne P (2020) From wild species to landraces and cultivars. In: Volk, G.M., Byrne, P., editors. Crop Wild Relatives and their use in Plant Breeding. Colorado State University.
Trindade H, Sena I, Goncalves S, Romano A (2012) Genetic diversity of wild populations of Tuberaria major (Cistaceae), an endangered species endemic to the Algarve region (Portugal), using ISSR markers. Biochem Syst Ecol 45, 49-56.
Weir S (1990) Genetic data analysis: Methods for Discrete Population Genetic data. Sunderland, Sinauer Associates. Inc. Publishers, Massachusetts. 
Yeh F, Yang C, Boyle R (1999). POPGENE, version 1.32: the user-friendly software for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, AB, Canada.
Zavinon F, Adoukonou-Sagbadja H, Keilwagen J (2019) Genetic diversity and population structure in Beninese pigeon pea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome wide SNP markers. Genet Resour Crop Evol, 67, 191-208.
Zhang M, Mao W, Zhang J, Wu F (2014) Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9, 1-10.