القای تراریختی در کنجد با سازه بیانی نوترکیب pBI121 واجد ژن های CYP81Q1 و aroA با استفاده از آگروباکتریوم تومفاسینس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، عضو هیات علمی گروه مهندسی کشاورزی، دانشگاه پیام نور، تهران. ایران.

2 دانش آموخته کارشناسی ارشد، گروه زیست شناسی سلولی و مولکولی، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران.

چکیده

هدف: گیاهان روغنی بعد از غلات به عنوان دومین منبع تامین‌کننده کالری برای جوامع بشری محسوب می شوند. گیاه کنجد به دلیل داشتن روغنی با کیفیت و محتوای 43-46% اسید های چرب غیر اشباع، در سال‌های اخیر مورد توجه قرار گرفته است. به منظور بررسی امکان انتقال ژن نوترکیبaroA-CYP81Q1  با واسطه Agrobacterium tumefaciens  به کنجد که برای اولین بار در کشور گزارش شده است، پس از بهینه سازی کشت بافت و انتخاب بهترین ترکیب هورمونی و بهترین ریزنمونه، آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار، انجام گرفت.
مواد و روش‌ها: در این آزمایش ژن نوترکیبaroA-CYP81Q1 سنتز شده و در سویه آگروباکتریوم  (LB4404) ترانسفورم شد. کارآیی و فراوانی تراریختگی کنجد در محیط انتخابی حاوی ۵۰ میلی‌گرم در لیتر کانامایسین مورد ارزیابی گرفت. در نهایت به منظور تایید تراریختگی گیاهان باززا شده، آنالیزهای PCR با آغازگرهای اختصاصی روی گیاهان انتخابی انجام شد. همچنین میزان بیان ژن مولد سزامین (CYP81Q1) در گروه های کنترل و گروه های تراریخت در سطح معناداری P<0.01 سنجیده شد.
نتایج: تجزیه آماری نشان داد که درصد باززایی گیاهچه‌های تراریخته با استفاده از آگروباکتریوم  (LB4404) در محیط انتخابی حاوی کانامایسین به میزان 33 درصد بود. همچنین تجزیه PCR ژن هدف در گیاهان تراریخته، فراوانی تراریختگی را 33 درصد نشان داد. به علاوه، تکثیر قطعه  1634 جفت بازی، نشان دهنده صحت همسانه‌سازی در گیاهان تراریخته بود. نتایج بیانگر انتقال موفق ژن نوترکیبaroA-CYP81Q1  به گیاه کنجد می‌باشد. نتایج تجزیه واریانس نشان داد که اختلاف بسیار معنی داری در بیان ژن مولد سزامین در بین رقم تراریخت شده و گروه های کنترل وجود دارد (P<0.01).
نتیجه‌گیری: از آنجایی که ناقل های بیانی مبتنی برpBI121 نسبت به سایر ناقل های بیانی، کارایی بالایی داشته و به طور گسترده در انتقال ژن های نوترکیب به گیاهان مورد استفاده قرار می گیرند، ناقل نوترکیب ساخته شده در این پژوهش بیانگر انتقال موفق ژن مولد سزامین به گیاه کنجد برای افزایش ویژگی های صنعتی آن می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Transgenic induction in Sesamum indicum with recombinant pBI121 expression construct containing CYP81Q1 and aroA genes using Agrobacterium tomfacensis

نویسندگان [English]

  • Abbasali Yadollahi 1
  • Ghazal Ghajari 2
1 Assistant Professor, Department of Agricultural Engineering, Payame Noor University, Tehran, Iran.
2 MSc Student, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
چکیده [English]

Objective
Oilseeds are the second-largest source of calories for human societies after cereals. Sesamum indicum has been considered recently due to its oil quality and content of 43-46% unsaturated fatty acids. To investigate the possibility of transferring the recombinant aroA-CYP81Q1 gene through Agrobacterium tumefaciens to the Sesamum indicum plant (reported for the first time in the country), after optimizing tissue culture and selecting the best hormonal combination, a factorial experiment was performed. 
Materials and methods
In this experiment, the recombinant aroA-CYP81Q1 gene was synthesized and transformed into an Agrobacterium strain (LB4404). Gene cloning was confirmed by PCR and then confirmed by sequencing. The efficacy and frequency of transgenic Sesamum indicum were evaluated in the selected medium containing 50 mg/l kanamycin. Finally, to confirm the transgenicity of the regenerated plants, PCR analyzes were performed with specific primers on selected plants. Also, the expression of the sesamin-producing gene (CYP81Q1) in control groups and transgenic groups was measured at a significant level of P <0.01.   
Results
Statistical analysis showed that the percentage of regeneration of transgenic seedlings using Agrobacterium (LB4404) in the selected medium containing kanamycin was 33%. Also, PCR analysis of transgenic plants showed a prevalence of transgenics of 33%. In addition, amplification of the bp fragment indicated the accuracy of cloning in transgenic plants. The results indicate the successful transfer of this gene to the sesame plant to increase its industrial properties. The results of the analysis of variance showed that there was a significant difference in the expression of sesamin-producing genes between transgenic cultivar and control groups (P <0.01). 
Conclusions
Since pBI121-based expression vectors are more efficient than other expression vectors and are widely used in the transfer of recombinant genes to plants, the recombinant vector constructed in this study indicates successful gene transfer. Sesame to sesame plant to increase its industrial properties.

کلیدواژه‌ها [English]

  • Expressive vector
  • cloning
  • Sesamin
  • Sesamum indicum‌
عرب پور رق آبادی زهرا، محمدآبادی محمدرضا، خضری امین (1400) الگوی بیانی ژن p32 در بافت‌های ران، دست، راسته و چربی پشت بره کرمانی. مجله بیوتکنولوژی کشاورزی، 13(4)، 183-200.
محمدآبادی محمدرضا (1399) بیان ژن ESR1 در بز کرکی راینی با استفاده از real time PCR‎. مجله بیوتکنولوژی کشاورزی 12(1)، 192-177.
محمدآبادی محمدرضا (1399) پروفایل بیانیmRNA مختص بافت ژن ESR2 در بز. مجله بیوتکنولوژی کشاورزی 12(4)، 184-169.
محمدآبادی محمدرضا، سفلایی محمد (1399). پروفایل بیانی mRNA مختص بافت ژن BMP15 در بز. مجله بیوتکنولوژی کشاورزی 12(3)، 208-191.
محمدآبادی محمدرضا، کرد محبوبه، نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از real time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 122-111.
References
Andargie M, Vinas M, Rathgeb A, et al. (2021) Lignans of Sesame (Sesamum indicum L.): A Comprehensive Review. Molecules Basel 26(4), e883.
Arabpour Z, Mohammadabadi M, Khezri A (2021) The expression pattern of p32 gene in femur, humeral muscle, back muscle and back fat tissues of Kermani lambs. Agric Biotechnol J 13 (4), 183-200 (In Persian).
Callender P, Wettig D (2021) Phase Behavior of Non‐Ionic Surfactant‐Medium Chain Triglyceride‐Water Microemulsion Systems. J Surfactants Deterg 24(4), 603-629.
Chen J, Yu Q, Patterson E, et al. (2021) Dinitroaniline herbicide resistance and mechanisms in weeds. Front Plant Sci 12, 507.
Hussain A, Hameed A, Ajmal I, et al. (2018) Effects of sesame seed extract as a natural antioxidant on the oxidative stability of sunflower oil. J. Food Sci. Technol 55(10), 4099–4110.
Hwang H, Yu M, Lai M (2017) Agrobacterium-mediated plant transformation: biology and applications. TAB 15, e0186.
Ishida Y, Hiei Y, Komari T (2020) Tissue culture protocols for gene transfer and editing in maize (Zea mays L.). Plant Biotechnol 37(2), 121–128.
Piri-Gharaghie T, Doosti A, Mirzaei SA (2022) Fabrication and Characterization of pcDNA3. 1 (+) Location within Chitosan/Nanoparticles Complexes for Enhanced Gene Delivery. Iran. J. Biotechnol 20(3), 88-100. doi: 10.30498/ijb.2022.297534.3110.
Jan K, Chang Y, Hwang L, et al. (2012) Tissue distribution and cytochrome P450 inhibition of sesaminol and its tetrahydrofuranoid metabolites. J Agric Food Chem 60(35), 8616–8623.
Jiao Y, Davin LB, Lewis NG (1998) Furanofuran lignan metabolism as a function of seed maturation in Sesamum indicum: Methylenedioxy bridge formation. Phytochemistry49(2):387-94.
Kahrizi D, Salmanian A, Afshari A, et al. (2007) Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26(1), 95–104.
Kato M, Chu A, Davin L, et al. (1998) Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47(4):583-91.
Kim H, Ono E, Morimoto K, et al. (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50(12):2200-9.
Leino, L, Tall T, Helander M, et al. (2021) Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J Hazard Mater 408, 124556.
Masoudzadeh S, Mohammadabadi M, Khezri A, et al. (2020) Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 193, e106276.
Menze A, Mollers C (1999) Transformation of different Brassica napus cultivars with three different strains of Agrobacterium rhizogenes. New Horizos for an old crop, in: Proceeding of 10th International Rapeseed Congress, Canberra, Australia.
Piri‐Gharaghie T, Beiranvand S, Riahi A, et al. (2022) Fabrication and characterization of thymol‐loaded chitosan nanogels: Improved antibacterial and anti‐biofilm activities with negligible cytotoxicity. Chem. Biodivers 19(3), e202100426.
Mohammadabadi M, Masoudzadeh SH, Khezri A, et al. (2021) Fennel (Foeniculum vulgare) seed powder increases Delta-Like Non-Canonical Notch Ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon 7 (12), e08542.
Mohammadabadi M, Soflaei M (2020) Tissue-specific mRNA expression profile of BMP15 gene in goat. Agric Biotechnol J 12, 191-208 (In Persian).
Mohammadabadi MR (2020) Expression of ESR1 gene in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 12 (1), 177-192 (In Persian).
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (In Persian).
Mohammadabadi MR, Tohidinejad F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
 Muthulakshmi C, Sivaranjani R, & Selvi S (2021) Modification of sesame (Sesamum indicum L.) for Triacylglycerol accumulation in plant biomass for biofuel applications. Biotechnol Rep 32, e00668.
Myint D, Gilani S, Kawase M, et al. (2020) Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability 12(9), 3515.
Naylor R (2016). Oil crops, aquaculture, and the rising role of demand: A fresh perspective on food security. Glob Food Sec 11, 17-25.
Ono E, Nakai M, Fukui Y, et al. (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci 103(26):10116-21.
Pathak N, Bhaduri A, Rai A (2019) Sesame: Bioactive compounds and health benefits. Food Chem 181-200.
Pathak N, Rai A, Kumari R, et al. (2014) Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev 8(16), 147–155.
Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, et al. (2022) Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Sci rep 12(1):1-3.
Sankara Rao K, Rohini VK (1999) Gene transfer intoIndian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol 16:201-206.
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2021) Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim Biotechnol 33, 1-11.
Stefanov I, Fekets S, Bogre L, et al. (1994) Differential activity of the mannopine synthase and CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science 95:175-186.
Verma H, Theunuo S, Kumar A, et al. (2021) Prospects of Sesame Cultivation in North Eastern India. Current biotica 3(5), 330-331.
Zebarjadi AR (2005) The effect of transferred sense and anti-sense constructs of gene encoding β-ketoacyl CoA synthase on production of erucic acid in rapeseed. Ph. thesis, Tarbiat Modares University. (In Farsi).