کلونینگ، بررسی خصوصیات ملکولی و پیش‌بینی بیان مجازی ژن فیتاز phyC از باسیلوس سابتیلیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1 دانشجوی کارشناسی ارشد، گروه علوم دامی، دانشگاه فردوسی مشهد

2 2دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد 3دانشیار، گروه پژوهشی بیوتکنولوژی کشاورزی و دامی، پژوهشکده فناوری زیستی، دانشگاه فردوسی مشه

3 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

6 استادیار، گروه بیوشیمی، دانشکده علوم، دانشگاه فردوسی مشهد

7 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

فیتاز آنزیمی است که اسید فایتیک را هیدرولیز و فسفر معدنی تولید می­کند. یکی از منابع بیان­کننده آنزیم فیتاز، باکتری­ها هستند که در این میان جنس باسیلوس مهم‌ترین باکتری تولیدکننده فیتاز قلیایی مقاوم به حرارت می باشد. ژن فیتاز خارج سلولی باکتری باسیلوس سابتیلیس phyC با استفاده از آغازگرهای اختصاصی و لینکردار حاوی سایت­های برشی BamHI و HindIII جداسازی شد. به منظور انجام توالی­یابی و بررسی خصوصیات، ژن تکثیر شده phyC به ناقل pTZ57R/T انتقال داده شد. حضور ژن هدف در ناقل کلونینگ pTZ57R/T با استفاده از روش­ کلونی PCR و هضم آنزیمی تایید شد. ساختارهای نوکلئوتیدی و پیش­ بینی ساختار پروتئینی آنزیم فیتاز با استفاده از آنالیز توالی یابی مشخص گردید. وزن مولکولی آنزیم فیتاز 42 کیلو دالتون تخمین زده شد. نتایج این مطالعه نشان داد که به خوبی می توان نسبت به کلونینگ ژن فیتاز در وکتور کلونینگ اقدام کرد. از طرف دیگر پیش بینی مجازی آنزیم فیتاز با استفاده توالی نوکلئوتیدی و اسید آمینه، پتانسیل تولید آنزیم مقاوم به حرارت را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Cloning, nucleotide characterization and modeling expression of phytase gene phyC from Bacillus subtilis

نویسندگان [English]

  • Hamid Arian nejad 1
  • Mohammadreza Nassiri 2
  • Aliasghar Aslaminejad 3
  • Mojtaba Thmoors poor 4
  • Reza valizadeh 5
  • Ahmad Asoodeh 6
  • SHahrokh GHovati 7
1
2
3
4
5
6
7
چکیده [English]

Phytase has a hydrolysis function on phytic acid which yields inorganic phosphate. Using phytase enzymes in domestic animals have a positive effect on optimal diet intake. Bacillus species can only produce thermostable alkaline phytase. Accordingly extracellular phytase gene was isolated from Bacillus subtilis ATCC 12711 (phyc) using linker primers containing restriction sites of BamHI and HindIII. The isolated fragment was then inserted into pTZ57R/T vector for cloning and nucleotide characterization. Molecular weight of phytase protein was estimated about 42 kDa. On the other hand the model of phytase secondary structure showed the potential of thermostable characterization of enzyme

کلیدواژه‌ها [English]

  • Phytase enzyme
  • Gene cloning
  • Bacillus subtilis
  • Phytic acide
  • recombinant protein
Bendtsen JD, Nielson H, Von Heijne G, Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340: 783–795
Cho J, Lee C, Kang S, Lee J, Lee H, Bok J, Woo J, Moon Y, Choi Y(2005). Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Current microbiology 51: 11-15.
Choi YM, Suh HJ, Kim JM(2001). Purification and Properties of Extracellular Phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry 4: 287-292.
Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997). Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochemical Journal 328: 75-81.
Dharmsthiti S, Chalermpornpaisarn S, Kiatiyajarn M, Chanpokapaiboon A, Klongsithidej Y, Techawiparut J (2005). Phytase production from Pseudomonas putida harbouring Escherichia coli appA. Process Biochemistry 40: 789–793.
Ewing B, Green P (1998). Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research 8: 186-194.
Graf E, Empson K, Eaton JW(1987). Phytic acid. A natural antioxidant. Journal of Biological Chemistry 262: 11647-11651.
Greiner R, Haller E, Konietzny U, Jany KD (1997). Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics 341: 201–206
Greiner R, Konietzny U, Jany KD (1993). Purification and characterization of two phytases from Escherichia coli. Archives of Biochemistry and Biophysics 303: 107–113
Han Y, Lei XG (1999). Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Archives of Biochemistry and Biophysics 364: 83-90.
Hara A, Ebina S, Kondo A, Funagua T (1985). A new type of phytase from Typha latifolia L. Agricultural and biological chemistry 49: 3539–3544
Irvine GCJ, Cosgrove DJ (1971). Inositol phosphate phosphatases of microbiological origin. Journal of Biological Sciences 24: 547.
Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998). Isolation, Characterization, Molecular Gene Cloning, and Sequencing of a Novel Phytase from Bacillus subtilis. Applied and Environmental Microbiology 2: 2079–2085.
Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998). Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiology Letters 162: 185-191.
Lei XG, Porres JM (2003). Phytase enzymology, applications, and biotechnology: a review. Biotechnol. Letters 25: 1787–1794.
Lei XG, Stahl CH (2001). Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology 57: 474-481.
Liu BL, Rafiq A, Tzeng YM, Rob A (1998). The induction and characterization of phytase and beyond. Enzyme and Microbial Technology 22: 415-424.
Nakazawa K, Takano T, Sohma A, Yamane K (1986). Secretion activities of .bacillus subtilis a-amylase signal peptides of different lengths in escherichia coli cells. biochemical and biophysical research communications 5: 624-631.
Niewiadomski H (1990). Nutritional value of rapeseed meal. In H. Niewiadomski (Ed.), Rapeseed chemistry and technology (pp. 397–428). Amsterdam, The Netherlands: PWN-Polish Scientific Publishers,Warszawa and Elsevier Science Publishers.
Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001). Calcium dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40: 9669–9676
Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology 63: 362-372.
Powar VK, Jagannathan V (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. Journal of Bacteriology 151: 1102–1108.
Rao DECS, Rao KV, Reddy VD (2008). Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology 105: 1128–1137.
Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1989). Phytates in cereals and legumes. Boca Raton, CRC Press, Inc.
Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Scott JJ, Loewus FA (1986). A calcium-activated phytase from pollen of Lilium longiXorum. Plant Physiology 82: 333–335
Shimizu M (1992). Purification and charecterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, biotechnology and biochemistry 56: 1266-1269
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739.
Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiologic Biotechnology 37: 279–287.
Xuan NT, Hang MT, Thanh VN (2009). Cloning and over Expression of an Aspergillus niger XP Phytase Gene (phyA) in Pichia pastoris. Engineering and Technology 56: 750-753.
Zalucki YM, Beacham IR, Jennings MP (2009). Biased codon usage in signal peptides: a role in protein export. Trends in Microbiology 17: 146-150.